多目标流声形状优化的图神经网络代理模型

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Farnoosh Hadizadeh , Wrik Mallik , Rajeev K. Jaiman
{"title":"多目标流声形状优化的图神经网络代理模型","authors":"Farnoosh Hadizadeh ,&nbsp;Wrik Mallik ,&nbsp;Rajeev K. Jaiman","doi":"10.1016/j.cma.2025.117921","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a graph neural network (GNN)-based surrogate modeling approach for multi-objective fluid-acoustic shape optimization. The proposed GNN model transforms mesh-based simulations into a computational graph, enabling steady-state prediction of pressure and velocity fields around varying geometries subjected to different operating conditions. We employ signed distance functions to implicitly encode geometries on unstructured nodes represented by the graph neural network. By integrating these functions with computational mesh information into the GNN architecture, our approach effectively captures geometric variations and learns their influence on flow behavior. The trained graph neural network achieves high prediction accuracy for aerodynamic quantities, with median relative errors of 0.5%–1% for pressure and velocity fields across 200 test cases. The predicted flow field is utilized to extract fluid force coefficients and boundary layer velocity profiles, which are then integrated into an acoustic prediction model to estimate far-field noise. This enables the direct integration of the coupled fluid-acoustic analysis in the multi-objective shape optimization algorithm, where the airfoil geometry is optimized to simultaneously minimize trailing-edge noise and maximize aerodynamic performance. Results show that the optimized airfoil achieves a 13.9% reduction in overall sound pressure level (15.82 dBA) while increasing lift by 7.2% under fixed operating conditions. Optimization was also performed under a different set of operating conditions to assess the model’s robustness and demonstrate its effectiveness across varying flow conditions. In addition to its adaptability, our GNN-based surrogate model, integrated with the shape optimization algorithm, exhibits a computational speed-up of three orders of magnitude compared to full-order online optimization applications while maintaining high accuracy. This work demonstrates the potential of GNNs as an efficient data-driven approach for fluid-acoustic shape optimization via adaptive morphing of structures.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117921"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph neural network surrogate model for multi-objective fluid-acoustic shape optimization\",\"authors\":\"Farnoosh Hadizadeh ,&nbsp;Wrik Mallik ,&nbsp;Rajeev K. Jaiman\",\"doi\":\"10.1016/j.cma.2025.117921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a graph neural network (GNN)-based surrogate modeling approach for multi-objective fluid-acoustic shape optimization. The proposed GNN model transforms mesh-based simulations into a computational graph, enabling steady-state prediction of pressure and velocity fields around varying geometries subjected to different operating conditions. We employ signed distance functions to implicitly encode geometries on unstructured nodes represented by the graph neural network. By integrating these functions with computational mesh information into the GNN architecture, our approach effectively captures geometric variations and learns their influence on flow behavior. The trained graph neural network achieves high prediction accuracy for aerodynamic quantities, with median relative errors of 0.5%–1% for pressure and velocity fields across 200 test cases. The predicted flow field is utilized to extract fluid force coefficients and boundary layer velocity profiles, which are then integrated into an acoustic prediction model to estimate far-field noise. This enables the direct integration of the coupled fluid-acoustic analysis in the multi-objective shape optimization algorithm, where the airfoil geometry is optimized to simultaneously minimize trailing-edge noise and maximize aerodynamic performance. Results show that the optimized airfoil achieves a 13.9% reduction in overall sound pressure level (15.82 dBA) while increasing lift by 7.2% under fixed operating conditions. Optimization was also performed under a different set of operating conditions to assess the model’s robustness and demonstrate its effectiveness across varying flow conditions. In addition to its adaptability, our GNN-based surrogate model, integrated with the shape optimization algorithm, exhibits a computational speed-up of three orders of magnitude compared to full-order online optimization applications while maintaining high accuracy. This work demonstrates the potential of GNNs as an efficient data-driven approach for fluid-acoustic shape optimization via adaptive morphing of structures.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"441 \",\"pages\":\"Article 117921\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525001938\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001938","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于图神经网络(GNN)的多目标流声形状优化代理建模方法。提出的GNN模型将基于网格的模拟转换为计算图,能够在不同操作条件下对不同几何形状周围的压力和速度场进行稳态预测。我们使用符号距离函数对图形神经网络表示的非结构化节点上的几何图形进行隐式编码。通过将这些函数与计算网格信息集成到GNN架构中,我们的方法有效地捕获几何变化并学习它们对流动行为的影响。经过训练的图神经网络对空气动力学量的预测精度很高,在200个测试用例中,压力和速度场的中位数相对误差为0.5%-1%。利用预测流场提取流体力系数和边界层速度分布,然后将其整合到声学预测模型中,以估计远场噪声。这使得耦合流声分析能够直接集成到多目标形状优化算法中,其中翼型几何形状得到优化,同时最小化尾缘噪声并最大化气动性能。结果表明,在固定工况下,优化后的翼型整体声压级(15.82 dBA)降低13.9%,升力提高7.2%。在不同的运行条件下进行了优化,以评估模型的鲁棒性,并证明其在不同流量条件下的有效性。除了适应性外,我们的基于gnn的代理模型与形状优化算法相结合,与全阶在线优化应用相比,在保持高精度的同时,计算速度提高了三个数量级。这项工作证明了GNNs作为一种有效的数据驱动方法的潜力,可以通过结构的自适应变形来优化流体声形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph neural network surrogate model for multi-objective fluid-acoustic shape optimization
This study presents a graph neural network (GNN)-based surrogate modeling approach for multi-objective fluid-acoustic shape optimization. The proposed GNN model transforms mesh-based simulations into a computational graph, enabling steady-state prediction of pressure and velocity fields around varying geometries subjected to different operating conditions. We employ signed distance functions to implicitly encode geometries on unstructured nodes represented by the graph neural network. By integrating these functions with computational mesh information into the GNN architecture, our approach effectively captures geometric variations and learns their influence on flow behavior. The trained graph neural network achieves high prediction accuracy for aerodynamic quantities, with median relative errors of 0.5%–1% for pressure and velocity fields across 200 test cases. The predicted flow field is utilized to extract fluid force coefficients and boundary layer velocity profiles, which are then integrated into an acoustic prediction model to estimate far-field noise. This enables the direct integration of the coupled fluid-acoustic analysis in the multi-objective shape optimization algorithm, where the airfoil geometry is optimized to simultaneously minimize trailing-edge noise and maximize aerodynamic performance. Results show that the optimized airfoil achieves a 13.9% reduction in overall sound pressure level (15.82 dBA) while increasing lift by 7.2% under fixed operating conditions. Optimization was also performed under a different set of operating conditions to assess the model’s robustness and demonstrate its effectiveness across varying flow conditions. In addition to its adaptability, our GNN-based surrogate model, integrated with the shape optimization algorithm, exhibits a computational speed-up of three orders of magnitude compared to full-order online optimization applications while maintaining high accuracy. This work demonstrates the potential of GNNs as an efficient data-driven approach for fluid-acoustic shape optimization via adaptive morphing of structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信