WeAIR:用于空气质量监测的可穿戴蜂群传感器,以提高公民对气候变化的认识

IF 4.1 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Giovanna Maria Dimitri , Lorenzo Parri , Eleonora Vitanza , Alessandro Pozzebon , Ada Fort , Chiara Mocenni
{"title":"WeAIR:用于空气质量监测的可穿戴蜂群传感器,以提高公民对气候变化的认识","authors":"Giovanna Maria Dimitri ,&nbsp;Lorenzo Parri ,&nbsp;Eleonora Vitanza ,&nbsp;Alessandro Pozzebon ,&nbsp;Ada Fort ,&nbsp;Chiara Mocenni","doi":"10.1016/j.csi.2025.104004","DOIUrl":null,"url":null,"abstract":"<div><div>The present study proposes the implementation of an air quality measurement tool through the use of wearable devices, named WeAIR, consisting of wearable sensors for measuring NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>, CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, CO, temperature, humidity, barometric pressure and PM10. In particular through the use of our novel sensor prototype, we performed a measurement collection campaign, acquiring an extensive set of geo-localized air quality data in the city of Siena (Italy). We further implemented and applied an AI neural network based model, capable of predicting the localization of an observation, having as input the air monitoring parameters and using the new spatio-temporal collected datasets. The promising performances obtained with the AI prediction approach enhanced the importance and possibilities of using such spatio-temporal air quality monitoring datasets, suggesting their crucial role both for raising citizen awareness on climate change and supporting policymakers’ decisions, as for instance the ones related to the positioning of new fixed monitoring stations.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"94 ","pages":"Article 104004"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WeAIR: Wearable Swarm Sensors for Air Quality Monitoring to Foster Citizens’ Awareness of Climate Change\",\"authors\":\"Giovanna Maria Dimitri ,&nbsp;Lorenzo Parri ,&nbsp;Eleonora Vitanza ,&nbsp;Alessandro Pozzebon ,&nbsp;Ada Fort ,&nbsp;Chiara Mocenni\",\"doi\":\"10.1016/j.csi.2025.104004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study proposes the implementation of an air quality measurement tool through the use of wearable devices, named WeAIR, consisting of wearable sensors for measuring NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>, CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, CO, temperature, humidity, barometric pressure and PM10. In particular through the use of our novel sensor prototype, we performed a measurement collection campaign, acquiring an extensive set of geo-localized air quality data in the city of Siena (Italy). We further implemented and applied an AI neural network based model, capable of predicting the localization of an observation, having as input the air monitoring parameters and using the new spatio-temporal collected datasets. The promising performances obtained with the AI prediction approach enhanced the importance and possibilities of using such spatio-temporal air quality monitoring datasets, suggesting their crucial role both for raising citizen awareness on climate change and supporting policymakers’ decisions, as for instance the ones related to the positioning of new fixed monitoring stations.</div></div>\",\"PeriodicalId\":50635,\"journal\":{\"name\":\"Computer Standards & Interfaces\",\"volume\":\"94 \",\"pages\":\"Article 104004\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Standards & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920548925000339\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000339","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出通过使用名为WeAIR的可穿戴设备实现空气质量测量工具,该设备由可穿戴传感器组成,用于测量NOx, CO2, CO,温度,湿度,气压和PM10。特别是通过使用我们的新型传感器原型,我们进行了测量收集活动,在锡耶纳(意大利)市获得了一套广泛的地理定位空气质量数据。我们进一步实现并应用了一个基于人工智能神经网络的模型,该模型能够预测观测的定位,将空气监测参数作为输入,并使用新的时空收集数据集。人工智能预测方法获得的良好表现增强了使用这种时空空气质量监测数据集的重要性和可能性,表明它们在提高公民对气候变化的认识和支持政策制定者决策方面发挥了至关重要的作用,例如与新固定监测站定位有关的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WeAIR: Wearable Swarm Sensors for Air Quality Monitoring to Foster Citizens’ Awareness of Climate Change
The present study proposes the implementation of an air quality measurement tool through the use of wearable devices, named WeAIR, consisting of wearable sensors for measuring NOx, CO2, CO, temperature, humidity, barometric pressure and PM10. In particular through the use of our novel sensor prototype, we performed a measurement collection campaign, acquiring an extensive set of geo-localized air quality data in the city of Siena (Italy). We further implemented and applied an AI neural network based model, capable of predicting the localization of an observation, having as input the air monitoring parameters and using the new spatio-temporal collected datasets. The promising performances obtained with the AI prediction approach enhanced the importance and possibilities of using such spatio-temporal air quality monitoring datasets, suggesting their crucial role both for raising citizen awareness on climate change and supporting policymakers’ decisions, as for instance the ones related to the positioning of new fixed monitoring stations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Standards & Interfaces
Computer Standards & Interfaces 工程技术-计算机:软件工程
CiteScore
11.90
自引率
16.00%
发文量
67
审稿时长
6 months
期刊介绍: The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking. Computer Standards & Interfaces is an international journal dealing specifically with these topics. The journal • Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels • Publishes critical comments on standards and standards activities • Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods • Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts • Stimulates relevant research by providing a specialised refereed medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信