分类跟踪的本地术语

IF 1.5 1区 数学 Q1 MATHEMATICS
Dennis Gaitsgory , Yakov Varshavsky
{"title":"分类跟踪的本地术语","authors":"Dennis Gaitsgory ,&nbsp;Yakov Varshavsky","doi":"10.1016/j.aim.2025.110223","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we introduce the categorical “true local terms” maps for Artin stacks and show that they are additive and commute with proper pushforwards, smooth pullbacks and specializations. In particular, we generalizing results of <span><span>[14]</span></span> to this setting.</div><div>As an application, we supply proofs of two theorems stated in <span><span>[1]</span></span>. Namely, we show that the “true local terms” of the Frobenius endomorphism coincide with the “naive local terms” and that the “naive local terms” commute with !-pushforwards. The latter result is a categorical version of the classical Grothendieck–Lefschetz trace formula.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110223"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local terms for the categorical trace\",\"authors\":\"Dennis Gaitsgory ,&nbsp;Yakov Varshavsky\",\"doi\":\"10.1016/j.aim.2025.110223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we introduce the categorical “true local terms” maps for Artin stacks and show that they are additive and commute with proper pushforwards, smooth pullbacks and specializations. In particular, we generalizing results of <span><span>[14]</span></span> to this setting.</div><div>As an application, we supply proofs of two theorems stated in <span><span>[1]</span></span>. Namely, we show that the “true local terms” of the Frobenius endomorphism coincide with the “naive local terms” and that the “naive local terms” commute with !-pushforwards. The latter result is a categorical version of the classical Grothendieck–Lefschetz trace formula.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 110223\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001215\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001215","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了Artin堆栈的范畴“真局部项”映射,并证明了它们具有适当的前推、平滑回调和专门化的可加性和可交换性。特别地,我们将[14]的结果推广到这个设置。作为应用,我们给出了[1]中两个定理的证明。也就是说,我们证明了Frobenius自同态的“真局部项”与“朴素局部项”是一致的,并且“朴素局部项”与-pushforward交换。后一个结果是经典格罗滕迪克-莱夫谢茨迹公式的一个绝对版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local terms for the categorical trace
In this paper we introduce the categorical “true local terms” maps for Artin stacks and show that they are additive and commute with proper pushforwards, smooth pullbacks and specializations. In particular, we generalizing results of [14] to this setting.
As an application, we supply proofs of two theorems stated in [1]. Namely, we show that the “true local terms” of the Frobenius endomorphism coincide with the “naive local terms” and that the “naive local terms” commute with !-pushforwards. The latter result is a categorical version of the classical Grothendieck–Lefschetz trace formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信