通过比较目视石、喙和眼晶状体对白托鲷年龄和生长的影响

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Blondine Agus, Pietro Battaglia, Andrea Bellodi, Rita Cannas, Elisabetta Coluccia, Danila Cuccu
{"title":"通过比较目视石、喙和眼晶状体对白托鲷年龄和生长的影响","authors":"Blondine Agus, Pietro Battaglia, Andrea Bellodi, Rita Cannas, Elisabetta Coluccia, Danila Cuccu","doi":"10.3389/fmars.2025.1567441","DOIUrl":null,"url":null,"abstract":"The age composition of <jats:italic>Todaropsis eblanae</jats:italic> from the Sardinian waters (western Mediterranean Sea) was studied for the first time through the analysis of growth increments and the comparison of three structures: statoliths, beaks and eye lenses. The analysis was performed on 270 wild specimens of both sexes at different sizes (45-200 mm of mantle length; 6.98-443 g of total weight) and maturity stages (immature, maturing and mature) caught from July to September by trawl net. Significant differences in growth and length-weight relationship were observed between sexes, due to females reach a larger size than males. All the three structures had dimensions positively correlated with the size of the animals and showed clearly readable growth increments. Low values of IAPE, CV and PA confirmed the accuracy and good reproducibility of age readings. Eye lenses showed a very high number of growth increments (106-640), and a daily deposition was excluded. In contrast, beaks and statoliths showed NI values (70-316 and 73-310, respectively) always consistent with the size and maturity of the specimens, then a daily deposition has been suggested and their value compared. Moreover, the Mann-Whitney W-test confirmed a highly significant relationship between the number of growth increments in beaks and statoliths, suggesting that the beak can be considered a valid alternative to statoliths for age estimation in <jats:italic>T. eblanae</jats:italic>. The absolute growth rates confirm that females grow faster than males. Both sexes showed a higher initial growth rate, which gradually decreases, with the highest values at the age of 101-151 days, before reaching sexual maturity. According to a semelparous cycle, the estimated ages for the largest mature female (310-316 days) and male (288-292 days) suggest a lifespan of less than one year. Overall, the age and growth results reported, although referred to a specific area and a short sampling, could represent useful knowledge for a correct evaluation and management of this important commercial species in the future.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age and growth of Todaropsis eblanae (Ommastrephidae) through comparison of statoliths, beaks and eye lenses\",\"authors\":\"Blondine Agus, Pietro Battaglia, Andrea Bellodi, Rita Cannas, Elisabetta Coluccia, Danila Cuccu\",\"doi\":\"10.3389/fmars.2025.1567441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The age composition of <jats:italic>Todaropsis eblanae</jats:italic> from the Sardinian waters (western Mediterranean Sea) was studied for the first time through the analysis of growth increments and the comparison of three structures: statoliths, beaks and eye lenses. The analysis was performed on 270 wild specimens of both sexes at different sizes (45-200 mm of mantle length; 6.98-443 g of total weight) and maturity stages (immature, maturing and mature) caught from July to September by trawl net. Significant differences in growth and length-weight relationship were observed between sexes, due to females reach a larger size than males. All the three structures had dimensions positively correlated with the size of the animals and showed clearly readable growth increments. Low values of IAPE, CV and PA confirmed the accuracy and good reproducibility of age readings. Eye lenses showed a very high number of growth increments (106-640), and a daily deposition was excluded. In contrast, beaks and statoliths showed NI values (70-316 and 73-310, respectively) always consistent with the size and maturity of the specimens, then a daily deposition has been suggested and their value compared. Moreover, the Mann-Whitney W-test confirmed a highly significant relationship between the number of growth increments in beaks and statoliths, suggesting that the beak can be considered a valid alternative to statoliths for age estimation in <jats:italic>T. eblanae</jats:italic>. The absolute growth rates confirm that females grow faster than males. Both sexes showed a higher initial growth rate, which gradually decreases, with the highest values at the age of 101-151 days, before reaching sexual maturity. According to a semelparous cycle, the estimated ages for the largest mature female (310-316 days) and male (288-292 days) suggest a lifespan of less than one year. Overall, the age and growth results reported, although referred to a specific area and a short sampling, could represent useful knowledge for a correct evaluation and management of this important commercial species in the future.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2025.1567441\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1567441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过对撒丁岛海域(西地中海)白托达opsis eblanae的生长增量分析和statestal、喙和眼晶状体三种结构的比较,首次对其年龄组成进行了研究。对270个不同大小(45 ~ 200 mm)的雌雄野生标本进行了分析;总重6.98-443 g)和7 - 9月用拖网捕捞的成熟期(未成熟、成熟、成熟)。由于雌性的体型大于雄性,因此两性之间的生长和长重关系存在显著差异。这三种结构的尺寸都与动物的大小呈正相关,并显示出清晰可读的生长增量。低的IAPE、CV和PA值证实了年龄读数的准确性和良好的再现性。眼晶状体显示出非常高的生长增量(106-640),排除了每日沉积。相比之下,喙和statrock的NI值(分别为70-316和73-310)与标本的大小和成熟度一致,因此建议每天沉积并比较它们的值。此外,Mann-Whitney w检验证实了喙的生长增量数量与统计石之间的高度显著关系,这表明喙可以被认为是T. eblanae年龄估计的有效替代统计石。绝对增长率证实了女性比男性长得快。两性在性成熟前均表现出较高的初始生长速率,生长速率逐渐降低,在101 ~ 151天达到最高值。根据半产周期,最大的成熟雌性(310-316天)和雄性(288-292天)的估计年龄表明寿命不到一年。总的来说,报告的年龄和生长结果,虽然涉及到一个特定的区域和一个短暂的抽样,但可以为将来正确评价和管理这一重要的商业物种提供有用的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age and growth of Todaropsis eblanae (Ommastrephidae) through comparison of statoliths, beaks and eye lenses
The age composition of Todaropsis eblanae from the Sardinian waters (western Mediterranean Sea) was studied for the first time through the analysis of growth increments and the comparison of three structures: statoliths, beaks and eye lenses. The analysis was performed on 270 wild specimens of both sexes at different sizes (45-200 mm of mantle length; 6.98-443 g of total weight) and maturity stages (immature, maturing and mature) caught from July to September by trawl net. Significant differences in growth and length-weight relationship were observed between sexes, due to females reach a larger size than males. All the three structures had dimensions positively correlated with the size of the animals and showed clearly readable growth increments. Low values of IAPE, CV and PA confirmed the accuracy and good reproducibility of age readings. Eye lenses showed a very high number of growth increments (106-640), and a daily deposition was excluded. In contrast, beaks and statoliths showed NI values (70-316 and 73-310, respectively) always consistent with the size and maturity of the specimens, then a daily deposition has been suggested and their value compared. Moreover, the Mann-Whitney W-test confirmed a highly significant relationship between the number of growth increments in beaks and statoliths, suggesting that the beak can be considered a valid alternative to statoliths for age estimation in T. eblanae. The absolute growth rates confirm that females grow faster than males. Both sexes showed a higher initial growth rate, which gradually decreases, with the highest values at the age of 101-151 days, before reaching sexual maturity. According to a semelparous cycle, the estimated ages for the largest mature female (310-316 days) and male (288-292 days) suggest a lifespan of less than one year. Overall, the age and growth results reported, although referred to a specific area and a short sampling, could represent useful knowledge for a correct evaluation and management of this important commercial species in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信