星形胶质细胞形态重塑调节吸入全身麻醉诱导的意识状态转变

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bin Zhou, Qingran Li, Mengchan Su, Ping Liao, Yuncheng Luo, Rong Luo, Yunqing Yu, Meiyan Luo, Fan Lei, Xin Li, Jiao Jiao, Limei Yi, Jing Wang, Linghui Yang, Daqing Liao, Cheng Zhou, Xia Zhang, Hong Xiao, Yunxia Zuo, Jin Liu, Tao Zhu, Ruotian Jiang
{"title":"星形胶质细胞形态重塑调节吸入全身麻醉诱导的意识状态转变","authors":"Bin Zhou, Qingran Li, Mengchan Su, Ping Liao, Yuncheng Luo, Rong Luo, Yunqing Yu, Meiyan Luo, Fan Lei, Xin Li, Jiao Jiao, Limei Yi, Jing Wang, Linghui Yang, Daqing Liao, Cheng Zhou, Xia Zhang, Hong Xiao, Yunxia Zuo, Jin Liu, Tao Zhu, Ruotian Jiang","doi":"10.1038/s41380-025-02978-2","DOIUrl":null,"url":null,"abstract":"<p>General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.</p><figure></figure>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"22 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia\",\"authors\":\"Bin Zhou, Qingran Li, Mengchan Su, Ping Liao, Yuncheng Luo, Rong Luo, Yunqing Yu, Meiyan Luo, Fan Lei, Xin Li, Jiao Jiao, Limei Yi, Jing Wang, Linghui Yang, Daqing Liao, Cheng Zhou, Xia Zhang, Hong Xiao, Yunxia Zuo, Jin Liu, Tao Zhu, Ruotian Jiang\",\"doi\":\"10.1038/s41380-025-02978-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.</p><figure></figure>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-025-02978-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02978-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一般认为,全身麻醉剂(GAs)通过作用于突触前和突触后靶点来诱导意识丧失(LOC)。然而,星形胶质细胞参与LOC的机制尚不清楚。在这里,我们报道吸入的气体通过调节Ezrin(一种对星形胶质细胞精细形态至关重要的蛋白质)的磷酸化水平,在体感觉皮层内的星形胶质细胞精细过程中引起可逆性损伤。基因上删除Ezrin或破坏其磷酸化足以减少星形胶质细胞-突触相互作用并增强体内对七氟烷(Sevo)的敏感性。此外,我们发现破坏星形细胞Ezrin磷酸化可以通过增强补性GABA和降低麻醉下的兴奋性来增强Sevo对锥体神经元的抑制作用。我们的工作揭示了以前未被认识到的磷酸化依赖的形态动力学,它使星形胶质细胞能够在两种大脑意识状态之间的过渡期间调节神经元活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia

Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia

General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信