{"title":"增强心脏安全性:环丙沙星脂质体减轻蒽环类药物引起的心脏毒性而不影响抗癌效果。","authors":"Olga Swiech , Anna Boguszewska-Czubara","doi":"10.1016/j.cbi.2025.111496","DOIUrl":null,"url":null,"abstract":"<div><div>Anthracyclines, such as doxorubicin and epirubicin (EPI), are integral in the treatment of solid tumors and hematological malignancies but are associated with cardiotoxicity, potentially leading to heart failure. The underlying mechanisms involve the generation of reactive oxygen species (ROS), alterations in iron metabolism, and the inhibition of topoisomerase 2β (Top2β), resulting in mitochondrial dysfunction and cell death. Fluoroquinolones, including ciprofloxacin (CPX), enhance the efficacy of anthracyclines by inhibiting topoisomerase II and inducing apoptosis, thereby indicating a promising combination therapy. This study investigated the impact of environmental pH on the cardiotoxicity and myocardial accumulation of anthracyclines, as well as the cardioprotective and synergistic potential of CPX when co-administered with epirubicin. The findings revealed that only the zwitterionic form of CPX, either free or encapsulated in liposomes, offers significant cardioprotection without compromising the anticancer activity of EPI. Remarkably, the combination of liposomal CPX and EPI completely attenuates EPI's cardiotoxicity. These results suggest that initiating treatment with liposomal CPX prior to EPI administration may optimize cardioprotection while maintaining therapeutic efficacy against cancer.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"414 ","pages":"Article 111496"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing cardiac safety: Liposomal ciprofloxacin mitigates anthracycline-induced cardiotoxicity without compromising anticancer efficacy\",\"authors\":\"Olga Swiech , Anna Boguszewska-Czubara\",\"doi\":\"10.1016/j.cbi.2025.111496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anthracyclines, such as doxorubicin and epirubicin (EPI), are integral in the treatment of solid tumors and hematological malignancies but are associated with cardiotoxicity, potentially leading to heart failure. The underlying mechanisms involve the generation of reactive oxygen species (ROS), alterations in iron metabolism, and the inhibition of topoisomerase 2β (Top2β), resulting in mitochondrial dysfunction and cell death. Fluoroquinolones, including ciprofloxacin (CPX), enhance the efficacy of anthracyclines by inhibiting topoisomerase II and inducing apoptosis, thereby indicating a promising combination therapy. This study investigated the impact of environmental pH on the cardiotoxicity and myocardial accumulation of anthracyclines, as well as the cardioprotective and synergistic potential of CPX when co-administered with epirubicin. The findings revealed that only the zwitterionic form of CPX, either free or encapsulated in liposomes, offers significant cardioprotection without compromising the anticancer activity of EPI. Remarkably, the combination of liposomal CPX and EPI completely attenuates EPI's cardiotoxicity. These results suggest that initiating treatment with liposomal CPX prior to EPI administration may optimize cardioprotection while maintaining therapeutic efficacy against cancer.</div></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"414 \",\"pages\":\"Article 111496\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279725001267\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725001267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Anthracyclines, such as doxorubicin and epirubicin (EPI), are integral in the treatment of solid tumors and hematological malignancies but are associated with cardiotoxicity, potentially leading to heart failure. The underlying mechanisms involve the generation of reactive oxygen species (ROS), alterations in iron metabolism, and the inhibition of topoisomerase 2β (Top2β), resulting in mitochondrial dysfunction and cell death. Fluoroquinolones, including ciprofloxacin (CPX), enhance the efficacy of anthracyclines by inhibiting topoisomerase II and inducing apoptosis, thereby indicating a promising combination therapy. This study investigated the impact of environmental pH on the cardiotoxicity and myocardial accumulation of anthracyclines, as well as the cardioprotective and synergistic potential of CPX when co-administered with epirubicin. The findings revealed that only the zwitterionic form of CPX, either free or encapsulated in liposomes, offers significant cardioprotection without compromising the anticancer activity of EPI. Remarkably, the combination of liposomal CPX and EPI completely attenuates EPI's cardiotoxicity. These results suggest that initiating treatment with liposomal CPX prior to EPI administration may optimize cardioprotection while maintaining therapeutic efficacy against cancer.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.