{"title":"一种基于模型导向的医学影像半监督分割框架。","authors":"Guoping Xu, Xiaoxue Qian, Hua-Chieh Shao, Jax Luo, Weiguo Lu, You Zhang","doi":"10.1002/mp.17785","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. The Match-based framework, by using the consistency constraint of segmentation results from different models/augmented label-less inputs, is found effective in semi-supervised learning. This approach, however, is challenged by the low quality of pseudo-labels generated as intermediate products for training the network, due to the lack of the ‘‘ground-truth’’ reference.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study aims to leverage the foundation model, segment anything model (SAM), to assist unsupervised learning of Match-based frameworks. Trained with an extremely large dataset, SAM-based methods generalize better than traditional models to various imaging domains, allow it to serve as an assistant to Match-based frameworks to improve the quality of intermediate pseudo-labels for semi-supervised learning.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We propose SAM-Match, a SAM-guided and Match-based framework for semi-supervised medical image segmentation. Our approach involves two main steps: First, we use pretrained Match-based models to extract high-confidence predictions for prompt generation. Second, these prompts and unlabeled images are input into a fine-tuned SAM-based method to produce high-quality masks as pseudo-labels. And the refined pseudo-labels are further fed back to train the Match-based framework. SAM-Match can be trained in an end-to-end manner, facilitating interactions between the SAM- and Match-based models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>SAM-Match demonstrates robust performance across multiple medical imaging datasets, including the ACDC cardiac MRI dataset, the BUSI breast ultrasound dataset, and an in-house liver MRI dataset (MRLiver). We partitioned the datasets into training, validation, and test sets (70%, 10%, and 20% for ACDC; 60%, 9%, and 31% for BUSI; and 62%, 12%, and 25% for MRLiver). On ACDC, with only 3 labeled cases, we achieved a Dice score of 89.36% ± 0.06% on 20 test cases. For BUSI, using just 30 labeled samples for training, we attained a Dice score of 59.35% ± 0.12% on 170 test samples. On MRLiver, training with only 3 labeled cases resulted in a Dice score of 80.04% ± 0.11% on 12 test scans. Wilcoxon signed-rank tests with Bonferroni corrections between the SAM-Match framework and the other comparison methods further demonstrated the statistical significance of SAM-Match's improvement in segmentation accuracy.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our SAM-Match framework shows promising results in semi-supervised semantic segmentation, effectively tackling the challenges of automatic prompt generation for SAM and high-quality pseudo-label generation for Match-based models. It can help accelerate the adoption of semi-supervised learning in segmentation tasks, particularly in data-scarce scenarios. Our data and code will be made available at https://github.com/apple1986/SAMatch.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 6","pages":"4513-4527"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17785","citationCount":"0","resultStr":"{\"title\":\"A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging\",\"authors\":\"Guoping Xu, Xiaoxue Qian, Hua-Chieh Shao, Jax Luo, Weiguo Lu, You Zhang\",\"doi\":\"10.1002/mp.17785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. The Match-based framework, by using the consistency constraint of segmentation results from different models/augmented label-less inputs, is found effective in semi-supervised learning. This approach, however, is challenged by the low quality of pseudo-labels generated as intermediate products for training the network, due to the lack of the ‘‘ground-truth’’ reference.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>This study aims to leverage the foundation model, segment anything model (SAM), to assist unsupervised learning of Match-based frameworks. Trained with an extremely large dataset, SAM-based methods generalize better than traditional models to various imaging domains, allow it to serve as an assistant to Match-based frameworks to improve the quality of intermediate pseudo-labels for semi-supervised learning.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We propose SAM-Match, a SAM-guided and Match-based framework for semi-supervised medical image segmentation. Our approach involves two main steps: First, we use pretrained Match-based models to extract high-confidence predictions for prompt generation. Second, these prompts and unlabeled images are input into a fine-tuned SAM-based method to produce high-quality masks as pseudo-labels. And the refined pseudo-labels are further fed back to train the Match-based framework. SAM-Match can be trained in an end-to-end manner, facilitating interactions between the SAM- and Match-based models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>SAM-Match demonstrates robust performance across multiple medical imaging datasets, including the ACDC cardiac MRI dataset, the BUSI breast ultrasound dataset, and an in-house liver MRI dataset (MRLiver). We partitioned the datasets into training, validation, and test sets (70%, 10%, and 20% for ACDC; 60%, 9%, and 31% for BUSI; and 62%, 12%, and 25% for MRLiver). On ACDC, with only 3 labeled cases, we achieved a Dice score of 89.36% ± 0.06% on 20 test cases. For BUSI, using just 30 labeled samples for training, we attained a Dice score of 59.35% ± 0.12% on 170 test samples. On MRLiver, training with only 3 labeled cases resulted in a Dice score of 80.04% ± 0.11% on 12 test scans. Wilcoxon signed-rank tests with Bonferroni corrections between the SAM-Match framework and the other comparison methods further demonstrated the statistical significance of SAM-Match's improvement in segmentation accuracy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our SAM-Match framework shows promising results in semi-supervised semantic segmentation, effectively tackling the challenges of automatic prompt generation for SAM and high-quality pseudo-label generation for Match-based models. It can help accelerate the adoption of semi-supervised learning in segmentation tasks, particularly in data-scarce scenarios. Our data and code will be made available at https://github.com/apple1986/SAMatch.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"52 6\",\"pages\":\"4513-4527\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17785\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17785\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17785","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging
Background
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. The Match-based framework, by using the consistency constraint of segmentation results from different models/augmented label-less inputs, is found effective in semi-supervised learning. This approach, however, is challenged by the low quality of pseudo-labels generated as intermediate products for training the network, due to the lack of the ‘‘ground-truth’’ reference.
Purpose
This study aims to leverage the foundation model, segment anything model (SAM), to assist unsupervised learning of Match-based frameworks. Trained with an extremely large dataset, SAM-based methods generalize better than traditional models to various imaging domains, allow it to serve as an assistant to Match-based frameworks to improve the quality of intermediate pseudo-labels for semi-supervised learning.
Methods
We propose SAM-Match, a SAM-guided and Match-based framework for semi-supervised medical image segmentation. Our approach involves two main steps: First, we use pretrained Match-based models to extract high-confidence predictions for prompt generation. Second, these prompts and unlabeled images are input into a fine-tuned SAM-based method to produce high-quality masks as pseudo-labels. And the refined pseudo-labels are further fed back to train the Match-based framework. SAM-Match can be trained in an end-to-end manner, facilitating interactions between the SAM- and Match-based models.
Results
SAM-Match demonstrates robust performance across multiple medical imaging datasets, including the ACDC cardiac MRI dataset, the BUSI breast ultrasound dataset, and an in-house liver MRI dataset (MRLiver). We partitioned the datasets into training, validation, and test sets (70%, 10%, and 20% for ACDC; 60%, 9%, and 31% for BUSI; and 62%, 12%, and 25% for MRLiver). On ACDC, with only 3 labeled cases, we achieved a Dice score of 89.36% ± 0.06% on 20 test cases. For BUSI, using just 30 labeled samples for training, we attained a Dice score of 59.35% ± 0.12% on 170 test samples. On MRLiver, training with only 3 labeled cases resulted in a Dice score of 80.04% ± 0.11% on 12 test scans. Wilcoxon signed-rank tests with Bonferroni corrections between the SAM-Match framework and the other comparison methods further demonstrated the statistical significance of SAM-Match's improvement in segmentation accuracy.
Conclusions
Our SAM-Match framework shows promising results in semi-supervised semantic segmentation, effectively tackling the challenges of automatic prompt generation for SAM and high-quality pseudo-label generation for Match-based models. It can help accelerate the adoption of semi-supervised learning in segmentation tasks, particularly in data-scarce scenarios. Our data and code will be made available at https://github.com/apple1986/SAMatch.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.