所有陆生动物的物种丰富度和物种形成率来自生态学理论的综合。

IF 5.7 1区 生物学 Q1 EVOLUTIONARY BIOLOGY
Lucas D Fernandes, Rogier E Hintzen, Samuel E D Thompson, Tatsiana Barychka, Derek Tittensor, Michael Harfoot, Tim Newbold, James Rosindell
{"title":"所有陆生动物的物种丰富度和物种形成率来自生态学理论的综合。","authors":"Lucas D Fernandes, Rogier E Hintzen, Samuel E D Thompson, Tatsiana Barychka, Derek Tittensor, Michael Harfoot, Tim Newbold, James Rosindell","doi":"10.1093/sysbio/syaf006","DOIUrl":null,"url":null,"abstract":"<p><p>The total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this study, we approach both questions in conjunction, for all terrestrial animals. To do this, we combine two previously unconnected bodies of theory: general ecosystem models and individual-based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate, and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03-2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here is a way to tractably achieve it.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"469-482"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.\",\"authors\":\"Lucas D Fernandes, Rogier E Hintzen, Samuel E D Thompson, Tatsiana Barychka, Derek Tittensor, Michael Harfoot, Tim Newbold, James Rosindell\",\"doi\":\"10.1093/sysbio/syaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this study, we approach both questions in conjunction, for all terrestrial animals. To do this, we combine two previously unconnected bodies of theory: general ecosystem models and individual-based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate, and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03-2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here is a way to tractably achieve it.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"469-482\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syaf006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syaf006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

地球上物种的总数和新物种产生的速度是生态学、进化和自然保护的基本问题。这些问题通常是分开处理的,尽管它们之间有明显的联系。在这项研究中,我们将这两个问题结合起来,适用于所有陆生动物。为了做到这一点,我们结合了两个以前没有联系的理论:一般生态系统模型和基于个体的生态中性理论。一般的生态系统模型为我们提供了按功能群和体型划分的个体生物的估计数量。中性理论适用于功能相似的个体,将物种丰富度、物种形成率和个体生物数量联系起来。结合起来,对于已知物种数量的陆生恒温动物,它们为我们提供了物种形成率作为体型和饮食类别的函数的估计。将同样的速率外推到变温动物群体中,使我们能够估计这些群体的物种丰富度,包括尚未被描述的物种。我们发现每百万年每个物种的物种形成率随着体型的增加而降低。同样体型的食肉动物比杂食动物或食草动物的发病率更高。我们对陆地动物物种总数的估计在103 - 292万种之间,这个值与以前的研究结果一致,尽管我们使用了一种全新的方法。也许这些结果最值得注意的是,它们仅使用了来自大型恒温动物及其物种形成率的有限数据,并且预测过程基于机械理论。这项工作说明了一种解决经典生态进化问题的新方法的潜力,同时也增加了现有预测的权重。由于我们现在面临着一个巨大的生物变化的时代,将需要新的方法来在物种和个体生物水平上机械地模拟全球生物多样性。这将是一个巨大的挑战,但我们在这里介绍的一般生态系统模型和中性理论的结合是实现这一目标的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.

Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.

Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.

Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories.

The total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this study, we approach both questions in conjunction, for all terrestrial animals. To do this, we combine two previously unconnected bodies of theory: general ecosystem models and individual-based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate, and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03-2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here is a way to tractably achieve it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信