黄素转移酶ApbE:从发现到应用。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoman Fan, Marco W Fraaije
{"title":"黄素转移酶ApbE:从发现到应用。","authors":"Xiaoman Fan, Marco W Fraaije","doi":"10.1016/j.jbc.2025.108453","DOIUrl":null,"url":null,"abstract":"<p><p>ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible post-translational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The relatively small flavin transferase is typically anchored to the outer membrane of bacteria and possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of its target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes FAD as substrate to attach the FMN moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with FMN or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108453"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flavin transferase ApbE: from discovery to applications.\",\"authors\":\"Xiaoman Fan, Marco W Fraaije\",\"doi\":\"10.1016/j.jbc.2025.108453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible post-translational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The relatively small flavin transferase is typically anchored to the outer membrane of bacteria and possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of its target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes FAD as substrate to attach the FMN moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with FMN or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"108453\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.108453\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108453","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ApbE是一种独特的膜结合酶,它以共价的方式将黄素辅因子附着在特定的靶蛋白上。这种不可逆的翻译后修饰对各种细菌蛋白的正常功能至关重要。在古细菌和真核生物中也发现了ApbEs。本文综述了目前对这种独特的蛋白质修饰酶的结构和机制性质及其应用的研究进展。相对较小的黄素转移酶通常固定在细菌的外膜上,具有保守的黄素结合结构域和催化结构域。它识别目标蛋白的特定序列基序,导致苏氨酸或丝氨酸的黄烷化。对于黄烷化,它依赖于镁,并利用FAD作为底物将FMN片段附着在目标蛋白上,类似于磷酸化。apbe介导的黄烷化支持关键的细菌呼吸和代谢途径。最近,ApbE也被证明是一种选择性修饰蛋白质的多功能工具。使用黄素标记方法,蛋白质可以用FMN或其他黄素修饰。此外,还证明了ApbE可以将天然的非共价黄蛋白转化为共价黄蛋白。综上所述,ApbE通过催化共价黄烷化对各种黄蛋白的成熟至关重要。虽然在了解ApbE的作用和作用方式方面取得了很大进展,但仍有许多细菌蛋白被预测被ApbE黄烷化,其作用尚不清楚。此外,对ApbE作为蛋白质修饰工具的潜力的探索才刚刚开始。显然,未来的研究将产生新的与apbe相关的见解和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flavin transferase ApbE: from discovery to applications.

ApbE is a unique, membrane-bound enzyme which covalently attaches a flavin cofactor to specific target proteins. This irreversible post-translational modification is crucial for proper functioning of various bacterial proteins. ApbEs have also been identified in archaea and eukaryotes. This review summarizes current knowledge on the structural and mechanistic properties of this unique protein-modifying enzyme and its recent applications. The relatively small flavin transferase is typically anchored to the outer membrane of bacteria and possesses a conserved flavin-binding domain and a catalytic domain. It recognizes a specific sequence motif of its target proteins, resulting in flavinylation of a threonine or serine. For flavinylation, it depends on magnesium and utilizes FAD as substrate to attach the FMN moiety to the target protein, analogous to phosphorylation. ApbE-mediated flavinylation supports critical bacterial respiratory and metabolic pathways. Recently, ApbE was also shown to be a versatile tool for selectively modifying proteins. Using the flavin-tagging approach, proteins can be decorated with FMN or other flavins. Furthermore, it was demonstrated that ApbE can be employed to turn natural noncovalent flavoproteins into covalent flavoproteins. In summary, ApbE is crucial for the maturation of various flavoproteins by catalyzing covalent flavinylation. While great progress has been made in understanding the role and mode of action of ApbE, there are still many bacterial proteins predicted to be flavinylated by ApbE for which their role is enigmatic. Also, exploration of the potential of ApbE as protein modification tool has just begun. Clearly, future research will generate new ApbE-related insights and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信