基于因子设计的商用MALDI-2 timsTOF质谱分析优化

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Seth W Croslow, Chen H Sirois, Jonathan V Sweedler
{"title":"基于因子设计的商用MALDI-2 timsTOF质谱分析优化","authors":"Seth W Croslow, Chen H Sirois, Jonathan V Sweedler","doi":"10.1021/jasms.4c00424","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorial-Design-Based Optimization of a Commercial MALDI-2 timsTOF Mass Spectrometer for Lipid Analysis.\",\"authors\":\"Seth W Croslow, Chen H Sirois, Jonathan V Sweedler\",\"doi\":\"10.1021/jasms.4c00424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00424\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00424","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

激光定位基质辅助激光解吸/电离质谱法(MALDI-2 MS)已成为分析多种生物分子的重要技术。传统上,它仅限于定制实验室构建的设置,直到最近推出了商业timsTOF fleX MALDI-2系统。采用析因实验设计(DOE)对用于脂质分析的timsTOF fleX系统进行了全面优化。通过检查三个全因子do中的13个仪器参数,我们进行了1500多次个体运行,以评估这些参数对脂质信号强度的影响和交叉相互作用。我们找到了离子传输和MALDI-2参数的最佳值,以最大化脂质区域内的信号。这些结果表明,激光射击频率、碰撞射频和预脉冲存储是增强脂质离子传输的必要条件,与默认参数相比,信号强度增加了近5倍。对于MALDI-2优化,正模和负模的优化值相近,其中TIMS In压力和激光功率至关重要。总体而言,离子光学和MALDI-2的优化使某些脂质物种的信号增强了近2个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorial-Design-Based Optimization of a Commercial MALDI-2 timsTOF Mass Spectrometer for Lipid Analysis.

Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信