{"title":"优化复杂RNA系统的动态概率增强采样:h型假结的自由能面采样。","authors":"Karim Malekzadeh, Gül H Zerze","doi":"10.1021/acs.jcim.4c02235","DOIUrl":null,"url":null,"abstract":"<p><p>All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing On-the-Fly Probability Enhanced Sampling for Complex RNA Systems: Sampling Free Energy Surfaces of an H-Type Pseudoknot.\",\"authors\":\"Karim Malekzadeh, Gül H Zerze\",\"doi\":\"10.1021/acs.jcim.4c02235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02235\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02235","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Optimizing On-the-Fly Probability Enhanced Sampling for Complex RNA Systems: Sampling Free Energy Surfaces of an H-Type Pseudoknot.
All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.