优化复杂RNA系统的动态概率增强采样:h型假结的自由能面采样。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Karim Malekzadeh, Gül H Zerze
{"title":"优化复杂RNA系统的动态概率增强采样:h型假结的自由能面采样。","authors":"Karim Malekzadeh, Gül H Zerze","doi":"10.1021/acs.jcim.4c02235","DOIUrl":null,"url":null,"abstract":"<p><p>All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing On-the-Fly Probability Enhanced Sampling for Complex RNA Systems: Sampling Free Energy Surfaces of an H-Type Pseudoknot.\",\"authors\":\"Karim Malekzadeh, Gül H Zerze\",\"doi\":\"10.1021/acs.jcim.4c02235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02235\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02235","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

全原子分子动力学(MD)模拟为生物分子动力学提供了重要的见解,但固有的时间尺度限制往往限制了它们的有效性。先进的采样技术有助于克服这些限制,能够在原子分辨率下预测RNA的深度崎岖折叠自由能面(FES)。多热多伞动态概率增强采样(MM-OPES)方法结合温度和集体变量(cv)来加速采样,已经显示出前景和成本效益。然而,到目前为止,这些应用仅限于更简单的RNA系统,比如茎环。在这项研究中,我们优化了MM-OPES方法,以探索更复杂的基本RNA折叠单元h型RNA假结的FES。通过对CV组合和温度范围的系统探索,我们确定了采样和分析的最佳策略。我们的研究结果表明,将两个茎中的原生接触作为独立的cv,并使用300-480 K的温度范围提供了最有效的采样,而对原生沃森-克里克型氢键cv的投影产生了最佳分辨率的FES预测。此外,我们的采样方案还揭示了各种折叠/展开途径。本研究为采用MM-OPES方法提供了实用的见解和详细的决策策略,促进了其在原子分辨率上对复杂RNA结构的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing On-the-Fly Probability Enhanced Sampling for Complex RNA Systems: Sampling Free Energy Surfaces of an H-Type Pseudoknot.

All-atom molecular dynamics (MD) simulations offer crucial insights into biomolecular dynamics, but inherent time scale constraints often limit their effectiveness. Advanced sampling techniques help overcome these limitations, enabling predictions of deeply rugged folding free energy surfaces (FES) of RNA at atomistic resolution. The Multithermal-Multiumbrella On-the-Fly Probability Enhanced Sampling (MM-OPES) method, which combines temperature and collective variables (CVs) to accelerate sampling, has shown promise and cost-effectiveness. However, the applications have so far been limited to simpler RNA systems, such as stem-loops. In this study, we optimized the MM-OPES method to explore the FES of an H-type RNA pseudoknot, a more complex fundamental RNA folding unit. Through systematic exploration of CV combinations and temperature ranges, we identified an optimal strategy for both sampling and analysis. Our findings demonstrate that treating the native-like contacts in two stems as independent CVs and using a temperature range of 300-480 K provides the most effective sampling, while projections onto native Watson-Crick-type hydrogen bond CVs yield the best resolution FES prediction. Additionally, our sampling scheme also revealed various folding/unfolding pathways. This study provides practical insights and detailed decision-making strategies for adopting the MM-OPES method, facilitating its application to complex RNA structures at atomistic resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信