周细胞电信号和脑血流动力学

IF 3.3 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Thomas A. Longden, Dominic Isaacs
{"title":"周细胞电信号和脑血流动力学","authors":"Thomas A. Longden,&nbsp;Dominic Isaacs","doi":"10.1111/bcpt.70030","DOIUrl":null,"url":null,"abstract":"<p>Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70030","citationCount":"0","resultStr":"{\"title\":\"Pericyte Electrical Signalling and Brain Haemodynamics\",\"authors\":\"Thomas A. Longden,&nbsp;Dominic Isaacs\",\"doi\":\"10.1111/bcpt.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.</p>\",\"PeriodicalId\":8733,\"journal\":{\"name\":\"Basic & Clinical Pharmacology & Toxicology\",\"volume\":\"136 5\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic & Clinical Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70030\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70030","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

膜电位的动态控制是一个广泛的生物过程的联系,从控制单个细胞分泌到复杂的思想和行为的协调。所有血管细胞类型(平滑肌细胞、内皮细胞和周细胞)中的电信号有助于跨越时空尺度和所有组织的血液动力学和能量传递的控制。在这里,我们的目标是回顾和综合脑血管内电信号的关键研究,并将这些研究与最近的数据结合起来,说明周细胞的重要电信号作用,这样做是为了全面描述血管电信号在大脑中的血流控制。我们将此作为产生我们认为重要的进一步问题的框架。将其与神经系统中的电信号整合进行类比,可能有助于更深入地了解信号在脉管系统中是如何组织的,以及它如何在网络水平上控制血液流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pericyte Electrical Signalling and Brain Haemodynamics

Pericyte Electrical Signalling and Brain Haemodynamics

Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信