金属表面热防护用天然材料涂层的实验研究

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alexander A. Genbach, David Yu. Bondartsev, Natalia A. Genbach, Ekaterina A. Genbach
{"title":"金属表面热防护用天然材料涂层的实验研究","authors":"Alexander A. Genbach,&nbsp;David Yu. Bondartsev,&nbsp;Natalia A. Genbach,&nbsp;Ekaterina A. Genbach","doi":"10.1186/s40712-025-00252-5","DOIUrl":null,"url":null,"abstract":"<div><p>Heat transfer studies have been conducted for cooling systems with coatings made of natural materials, depending on the parameters of the detonation flame of a thermal tool and the thermophysical properties of natural materials. Cooling systems with porous coatings of mineral media powders (quartzites, granites, teschenites, tuffs, marbles) had been developed, which were applied on a metal surface at temperatures up to (2500 ÷ 3500) °C and flow rates up to 2500 m/s by hot flames emanating from combustion chambers and nozzles. The holography and high-speed filming method has been used in the studies. The cost impact per one thermal tool is at least 200–300 dollars. The phenomenon of spin detonation of a flame at an oxidant excess coefficient of less than one has been recorded; the spraying process was intensified by 2 to 6 times. The coatings have shown high reliability compared to other boosted systems. The maximum specific heat flows on the coating are (from 2 to 20 × 10<sup>6</sup> W/m<sup>2</sup>) and the oscillation frequency are up to 200 Hz. The overheating range of the coating was 20 ÷ 75 K. The thermodynamic characteristics of thermal tools have been established in the model and experimentally; the granulometric composition of materials has been obtained; the hydrodynamic operating modes of the burners have been selected (fuel combustion method, jet length, jet angle). The flight time of the particles, the optimal thickness of the coatings, the diameter of the powder, and the limiting compression and tensile stresses of the coating have been determined. Dependences of displacements for coatings under thermal influence have been obtained, which is important for diagnostics and forecasting of plants and prolongation of service life.\n</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00252-5","citationCount":"0","resultStr":"{\"title\":\"Experimental studies of natural material-based coatings for thermal protection of metallic surfaces\",\"authors\":\"Alexander A. Genbach,&nbsp;David Yu. Bondartsev,&nbsp;Natalia A. Genbach,&nbsp;Ekaterina A. Genbach\",\"doi\":\"10.1186/s40712-025-00252-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heat transfer studies have been conducted for cooling systems with coatings made of natural materials, depending on the parameters of the detonation flame of a thermal tool and the thermophysical properties of natural materials. Cooling systems with porous coatings of mineral media powders (quartzites, granites, teschenites, tuffs, marbles) had been developed, which were applied on a metal surface at temperatures up to (2500 ÷ 3500) °C and flow rates up to 2500 m/s by hot flames emanating from combustion chambers and nozzles. The holography and high-speed filming method has been used in the studies. The cost impact per one thermal tool is at least 200–300 dollars. The phenomenon of spin detonation of a flame at an oxidant excess coefficient of less than one has been recorded; the spraying process was intensified by 2 to 6 times. The coatings have shown high reliability compared to other boosted systems. The maximum specific heat flows on the coating are (from 2 to 20 × 10<sup>6</sup> W/m<sup>2</sup>) and the oscillation frequency are up to 200 Hz. The overheating range of the coating was 20 ÷ 75 K. The thermodynamic characteristics of thermal tools have been established in the model and experimentally; the granulometric composition of materials has been obtained; the hydrodynamic operating modes of the burners have been selected (fuel combustion method, jet length, jet angle). The flight time of the particles, the optimal thickness of the coatings, the diameter of the powder, and the limiting compression and tensile stresses of the coating have been determined. Dependences of displacements for coatings under thermal influence have been obtained, which is important for diagnostics and forecasting of plants and prolongation of service life.\\n</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00252-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-025-00252-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00252-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据热工具的爆轰火焰的参数和天然材料的热物理性质,对由天然材料制成的涂层冷却系统进行了传热研究。用矿物介质粉末(石英岩、花岗岩、特氏岩、凝灰岩、大理石)多孔涂层的冷却系统已经开发出来,这些冷却系统可以在温度高达(2500°C ÷ 3500°C)、流速高达2500米/秒的情况下,通过燃烧室和喷嘴发出的热火焰应用于金属表面。研究中采用了全息摄影和高速拍摄的方法。每个热敏工具的成本影响至少是200-300美元。记录了氧化剂过量系数小于1时火焰自旋爆轰的现象;喷涂过程强化2 ~ 6倍。与其他助推系统相比,该涂层具有很高的可靠性。涂层的最大比热流为(2 ~ 20 × 106 W/m2),振荡频率可达200hz。涂层的过热范围为20 ~ 75 K。通过模型和实验建立了热工具的热力学特性;得到了物料的粒度组成;选择了燃烧器的流体动力工作模式(燃料燃烧方式、射流长度、射流角度)。确定了颗粒的飞行时间、涂层的最佳厚度、粉末的直径以及涂层的极限压缩应力和拉伸应力。获得了涂层在热影响下位移的依赖关系,这对设备的诊断和预测以及延长使用寿命具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental studies of natural material-based coatings for thermal protection of metallic surfaces

Heat transfer studies have been conducted for cooling systems with coatings made of natural materials, depending on the parameters of the detonation flame of a thermal tool and the thermophysical properties of natural materials. Cooling systems with porous coatings of mineral media powders (quartzites, granites, teschenites, tuffs, marbles) had been developed, which were applied on a metal surface at temperatures up to (2500 ÷ 3500) °C and flow rates up to 2500 m/s by hot flames emanating from combustion chambers and nozzles. The holography and high-speed filming method has been used in the studies. The cost impact per one thermal tool is at least 200–300 dollars. The phenomenon of spin detonation of a flame at an oxidant excess coefficient of less than one has been recorded; the spraying process was intensified by 2 to 6 times. The coatings have shown high reliability compared to other boosted systems. The maximum specific heat flows on the coating are (from 2 to 20 × 106 W/m2) and the oscillation frequency are up to 200 Hz. The overheating range of the coating was 20 ÷ 75 K. The thermodynamic characteristics of thermal tools have been established in the model and experimentally; the granulometric composition of materials has been obtained; the hydrodynamic operating modes of the burners have been selected (fuel combustion method, jet length, jet angle). The flight time of the particles, the optimal thickness of the coatings, the diameter of the powder, and the limiting compression and tensile stresses of the coating have been determined. Dependences of displacements for coatings under thermal influence have been obtained, which is important for diagnostics and forecasting of plants and prolongation of service life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信