Gilbert J. Groenewald, Sanne ter Horst, Jacob J. Jaftha, André C. M. Ran
{"title":"在单位圆上具有极点的有理矩阵符号的类toeplitz算子:矩阵表示和谱分析","authors":"Gilbert J. Groenewald, Sanne ter Horst, Jacob J. Jaftha, André C. M. Ran","doi":"10.1007/s13370-025-01291-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a class of unbounded Toeplitz operators with rational matrix symbols that have poles on the unit circle and employ state space realization techniques from linear systems theory, as used in our earlier analysis in Groenewald et al. (J Math Anal Appl 532, Paper no. 127925, 2024) of this class of operators, to study the connection with semi-infinite Toeplitz matrices and to determine the essential spectrum and resolvent set.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01291-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A Toeplitz-like operator with rational matrix symbol having poles on the unit circle: matrix representation and spectral analysis\",\"authors\":\"Gilbert J. Groenewald, Sanne ter Horst, Jacob J. Jaftha, André C. M. Ran\",\"doi\":\"10.1007/s13370-025-01291-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider a class of unbounded Toeplitz operators with rational matrix symbols that have poles on the unit circle and employ state space realization techniques from linear systems theory, as used in our earlier analysis in Groenewald et al. (J Math Anal Appl 532, Paper no. 127925, 2024) of this class of operators, to study the connection with semi-infinite Toeplitz matrices and to determine the essential spectrum and resolvent set.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01291-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01291-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01291-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Toeplitz-like operator with rational matrix symbol having poles on the unit circle: matrix representation and spectral analysis
In this paper we consider a class of unbounded Toeplitz operators with rational matrix symbols that have poles on the unit circle and employ state space realization techniques from linear systems theory, as used in our earlier analysis in Groenewald et al. (J Math Anal Appl 532, Paper no. 127925, 2024) of this class of operators, to study the connection with semi-infinite Toeplitz matrices and to determine the essential spectrum and resolvent set.