{"title":"长期使用非甾体抗炎药(双氯芬酸)对99mTc-MAG3和99mTc-DTPA造影的影响","authors":"Seham Mustafa, Abdelhamid Elgazzar","doi":"10.1186/s41181-024-00325-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, are globally recognized as the primary choice for alleviating kidney pain and ureteric colic. This study examines the effects of long-term diclofenac administration on renography using two radiopharmaceuticals: 99mTc-mercaptoacetyltriglycine (99mTc-MAG3), which is excreted almost exclusively by the renal tubules, and 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), which is predominantly excreted by glomerular filtration.</p><h3>Results</h3><p>Diclofenac administration caused a rightward shift in renograms, indicating delayed renal uptake and clearance for both tracers. For 99mTc-MAG3, the average time to peak activity (Tmax) increased from 2.88 ± 0.3 min (control) to 4.2 ± 0.3 min (treated), while time from peak to 50% activity (T½) rose from 4.16 ± 0.1 min to 5.48 ± 0.5 min. For 99mTc-DTPA, Tmax increased from 4.3 ± 0.4 min to 12.9 ± 2.0 min, and T½ extended from 13.35 ± 1.5 min to 29.75 ± 2.0 min (<i>n</i> = 12; *<i>p</i> < 0.05 for all comparisons). Delayed tracer arrival in the bladder was particularly pronounced with 99mTc-DTPA.</p><h3>Conclusions</h3><p>Chronic diclofenac exposure significantly delays Tmax and T½ for both tracers, with a greater impact observed using 99mTc-DTPA. These findings highlight 99mTc-MAG3 as the preferred radiopharmaceutical for renography in settings involving long-term NSAID administration, ensuring accurate and reliable interpretation and minimizing variability associated with radiopharmaceutical selection.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00325-4","citationCount":"0","resultStr":"{\"title\":\"Impact of prolonged use of NSAID (Diclofenac) on 99mTc-MAG3 and 99mTc-DTPA renography\",\"authors\":\"Seham Mustafa, Abdelhamid Elgazzar\",\"doi\":\"10.1186/s41181-024-00325-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, are globally recognized as the primary choice for alleviating kidney pain and ureteric colic. This study examines the effects of long-term diclofenac administration on renography using two radiopharmaceuticals: 99mTc-mercaptoacetyltriglycine (99mTc-MAG3), which is excreted almost exclusively by the renal tubules, and 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), which is predominantly excreted by glomerular filtration.</p><h3>Results</h3><p>Diclofenac administration caused a rightward shift in renograms, indicating delayed renal uptake and clearance for both tracers. For 99mTc-MAG3, the average time to peak activity (Tmax) increased from 2.88 ± 0.3 min (control) to 4.2 ± 0.3 min (treated), while time from peak to 50% activity (T½) rose from 4.16 ± 0.1 min to 5.48 ± 0.5 min. For 99mTc-DTPA, Tmax increased from 4.3 ± 0.4 min to 12.9 ± 2.0 min, and T½ extended from 13.35 ± 1.5 min to 29.75 ± 2.0 min (<i>n</i> = 12; *<i>p</i> < 0.05 for all comparisons). Delayed tracer arrival in the bladder was particularly pronounced with 99mTc-DTPA.</p><h3>Conclusions</h3><p>Chronic diclofenac exposure significantly delays Tmax and T½ for both tracers, with a greater impact observed using 99mTc-DTPA. These findings highlight 99mTc-MAG3 as the preferred radiopharmaceutical for renography in settings involving long-term NSAID administration, ensuring accurate and reliable interpretation and minimizing variability associated with radiopharmaceutical selection.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00325-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-024-00325-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00325-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Impact of prolonged use of NSAID (Diclofenac) on 99mTc-MAG3 and 99mTc-DTPA renography
Background
Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac, are globally recognized as the primary choice for alleviating kidney pain and ureteric colic. This study examines the effects of long-term diclofenac administration on renography using two radiopharmaceuticals: 99mTc-mercaptoacetyltriglycine (99mTc-MAG3), which is excreted almost exclusively by the renal tubules, and 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), which is predominantly excreted by glomerular filtration.
Results
Diclofenac administration caused a rightward shift in renograms, indicating delayed renal uptake and clearance for both tracers. For 99mTc-MAG3, the average time to peak activity (Tmax) increased from 2.88 ± 0.3 min (control) to 4.2 ± 0.3 min (treated), while time from peak to 50% activity (T½) rose from 4.16 ± 0.1 min to 5.48 ± 0.5 min. For 99mTc-DTPA, Tmax increased from 4.3 ± 0.4 min to 12.9 ± 2.0 min, and T½ extended from 13.35 ± 1.5 min to 29.75 ± 2.0 min (n = 12; *p < 0.05 for all comparisons). Delayed tracer arrival in the bladder was particularly pronounced with 99mTc-DTPA.
Conclusions
Chronic diclofenac exposure significantly delays Tmax and T½ for both tracers, with a greater impact observed using 99mTc-DTPA. These findings highlight 99mTc-MAG3 as the preferred radiopharmaceutical for renography in settings involving long-term NSAID administration, ensuring accurate and reliable interpretation and minimizing variability associated with radiopharmaceutical selection.