具有指数非线性的谐振子热方程

IF 1 3区 数学 Q1 MATHEMATICS
Divyang G. Bhimani, Mohamed Majdoub, Ramesh Manna
{"title":"具有指数非线性的谐振子热方程","authors":"Divyang G. Bhimani,&nbsp;Mohamed Majdoub,&nbsp;Ramesh Manna","doi":"10.1007/s43034-025-00420-w","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the Cauchy problem for a heat equation involving a fractional harmonic oscillator and an exponential nonlinearity: </p><div><div><span>$$\\begin{aligned} \\partial _tu + (-\\Delta +\\varrho |x|^2)^{\\beta }u=f(u), \\quad (x,t)\\in {\\mathbb {R}}^d\\times (0,\\infty ), \\end{aligned}$$</span></div></div><p>where <span>\\(\\varrho \\ge 0,~\\beta &gt;0\\)</span> and <span>\\(f:{\\mathbb {R}}\\rightarrow {\\mathbb {R}}\\)</span> exhibits exponential growth at infinity, with <span>\\(f(0)=0.\\)</span> We establish local well-posedness within the appropriate Orlicz spaces. Through the examination of small initial data in suitable Orlicz spaces, we obtain the existence of global weak-mild solutions. Additionally, precise decay estimates are presented for large time, indicating that the decay rate is influenced by the nonlinearity’s behavior near the origin. Moreover, we highlight that the existence of local nonnegative classical solutions is no longer guaranteed when certain nonnegative initial data are considered within the appropriate Orlicz space.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat equations associated to harmonic oscillator with exponential nonlinearity\",\"authors\":\"Divyang G. Bhimani,&nbsp;Mohamed Majdoub,&nbsp;Ramesh Manna\",\"doi\":\"10.1007/s43034-025-00420-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the Cauchy problem for a heat equation involving a fractional harmonic oscillator and an exponential nonlinearity: </p><div><div><span>$$\\\\begin{aligned} \\\\partial _tu + (-\\\\Delta +\\\\varrho |x|^2)^{\\\\beta }u=f(u), \\\\quad (x,t)\\\\in {\\\\mathbb {R}}^d\\\\times (0,\\\\infty ), \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\varrho \\\\ge 0,~\\\\beta &gt;0\\\\)</span> and <span>\\\\(f:{\\\\mathbb {R}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> exhibits exponential growth at infinity, with <span>\\\\(f(0)=0.\\\\)</span> We establish local well-posedness within the appropriate Orlicz spaces. Through the examination of small initial data in suitable Orlicz spaces, we obtain the existence of global weak-mild solutions. Additionally, precise decay estimates are presented for large time, indicating that the decay rate is influenced by the nonlinearity’s behavior near the origin. Moreover, we highlight that the existence of local nonnegative classical solutions is no longer guaranteed when certain nonnegative initial data are considered within the appropriate Orlicz space.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00420-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00420-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了涉及分数阶谐振子和指数非线性的热方程的柯西问题:$$\begin{aligned} \partial _tu + (-\Delta +\varrho |x|^2)^{\beta }u=f(u), \quad (x,t)\in {\mathbb {R}}^d\times (0,\infty ), \end{aligned}$$其中\(\varrho \ge 0,~\beta >0\)和\(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\)在无穷远处呈指数增长,\(f(0)=0.\)我们在适当的Orlicz空间内建立了局部适定性。通过对合适Orlicz空间中的小初始数据的检验,得到了全局弱-温和解的存在性。此外,在大时间内给出了精确的衰减估计,表明衰减率受非线性在原点附近的行为的影响。此外,我们强调了当在适当的Orlicz空间内考虑某些非负初始数据时,局部非负经典解的存在性不再得到保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat equations associated to harmonic oscillator with exponential nonlinearity

We investigate the Cauchy problem for a heat equation involving a fractional harmonic oscillator and an exponential nonlinearity:

$$\begin{aligned} \partial _tu + (-\Delta +\varrho |x|^2)^{\beta }u=f(u), \quad (x,t)\in {\mathbb {R}}^d\times (0,\infty ), \end{aligned}$$

where \(\varrho \ge 0,~\beta >0\) and \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) exhibits exponential growth at infinity, with \(f(0)=0.\) We establish local well-posedness within the appropriate Orlicz spaces. Through the examination of small initial data in suitable Orlicz spaces, we obtain the existence of global weak-mild solutions. Additionally, precise decay estimates are presented for large time, indicating that the decay rate is influenced by the nonlinearity’s behavior near the origin. Moreover, we highlight that the existence of local nonnegative classical solutions is no longer guaranteed when certain nonnegative initial data are considered within the appropriate Orlicz space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信