基于热电耦合场的聚合物内部微通道稳定制备

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Ziran Bao, Tongzhou Shen, Kai Lu and Linan Zhang
{"title":"基于热电耦合场的聚合物内部微通道稳定制备","authors":"Ziran Bao, Tongzhou Shen, Kai Lu and Linan Zhang","doi":"10.1039/D4ME00171K","DOIUrl":null,"url":null,"abstract":"<p >The micro-channel structure in polymers has excellent properties and is widely used in biochemistry instruments, optical sensor devices and so on. At present, numerous challenges such as low surface quality and unstable formation are faced during the fabrication of internal polymer micro-channel structures, leading to functions that do not meet expectations. In this paper, a mathematical model for channel formation in polymers is established using phase field theory, and the deformation mechanism of the microstructure driven by surface energy was studied. Next, the micro-nano-structure evolution of the polymer was simulated, and the morphology of single-channel, double-channel and Z-shaped-channel structures was studied. Finally, a comparison test of the formed structure under the action of a single temperature field and thermal-electric coupling field was carried out, and experimental results were found to be consistent with simulation results.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 4","pages":" 279-287"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable fabrication of internal micro-channels in polymers based on a thermal-electric coupling field\",\"authors\":\"Ziran Bao, Tongzhou Shen, Kai Lu and Linan Zhang\",\"doi\":\"10.1039/D4ME00171K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The micro-channel structure in polymers has excellent properties and is widely used in biochemistry instruments, optical sensor devices and so on. At present, numerous challenges such as low surface quality and unstable formation are faced during the fabrication of internal polymer micro-channel structures, leading to functions that do not meet expectations. In this paper, a mathematical model for channel formation in polymers is established using phase field theory, and the deformation mechanism of the microstructure driven by surface energy was studied. Next, the micro-nano-structure evolution of the polymer was simulated, and the morphology of single-channel, double-channel and Z-shaped-channel structures was studied. Finally, a comparison test of the formed structure under the action of a single temperature field and thermal-electric coupling field was carried out, and experimental results were found to be consistent with simulation results.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 4\",\"pages\":\" 279-287\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00171k\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00171k","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物中的微通道结构具有优异的性能,广泛应用于生物化学仪器、光学传感器等器件中。目前,聚合物内部微通道结构在制造过程中面临着表面质量低、地层不稳定等诸多挑战,导致其功能达不到预期。本文利用相场理论建立了聚合物沟道形成的数学模型,研究了表面能驱动的微观结构变形机理。其次,模拟了聚合物的微纳结构演变,研究了单通道、双通道和z形通道结构的形貌。最后,对成形结构进行了单一温度场和热电耦合场作用下的对比试验,实验结果与仿真结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable fabrication of internal micro-channels in polymers based on a thermal-electric coupling field

Stable fabrication of internal micro-channels in polymers based on a thermal-electric coupling field

The micro-channel structure in polymers has excellent properties and is widely used in biochemistry instruments, optical sensor devices and so on. At present, numerous challenges such as low surface quality and unstable formation are faced during the fabrication of internal polymer micro-channel structures, leading to functions that do not meet expectations. In this paper, a mathematical model for channel formation in polymers is established using phase field theory, and the deformation mechanism of the microstructure driven by surface energy was studied. Next, the micro-nano-structure evolution of the polymer was simulated, and the morphology of single-channel, double-channel and Z-shaped-channel structures was studied. Finally, a comparison test of the formed structure under the action of a single temperature field and thermal-electric coupling field was carried out, and experimental results were found to be consistent with simulation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信