Joachim Pasel , Johannes Häusler , Ralf Peters , Detlef Stolten
{"title":"用于合成异丁醇的 NiPt 催化剂:摩尔比和总金属负载对活性和稳定性的影响†。","authors":"Joachim Pasel , Johannes Häusler , Ralf Peters , Detlef Stolten","doi":"10.1039/d5cy00078e","DOIUrl":null,"url":null,"abstract":"<div><div>If methanol and ethanol are produced regeneratively from green H<sub>2</sub> and CO<sub>2</sub>, a mixture of these two can further react to form longer-chain branched alcohols such as iso-butanol, which can serve as sustainable feedstocks for the transportation and chemical sectors. NiPt catalysts have shown to be promising for this process. This study investigates the influence of the total metal loading Ni + Pt and the molar ratio of Ni to Pt on catalytic behavior. It was observed that the values for the total metal loading and the molar fraction of Pt must be set correctly and precisely during synthesis, as most of all the space–time yield of the catalyst, the conversion of ethanol, and the iso-butanol yield strongly depend on them. Differing mechanisms for the decomposition of acetaldehyde on pure Pt/C and NiPt/C are comparatively discussed. They explain the beneficial effect of Ni in avoiding the formation of carbonaceous deposits on the active centers. In addition, Ni was found to prevent particle growth due to its strong metal–support interaction.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 7","pages":"Pages 2248-2260"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d5cy00078e?page=search","citationCount":"0","resultStr":"{\"title\":\"NiPt catalysts for the synthesis of iso-butanol: the influence of molar ratio and total metal loading on activity and stability†\",\"authors\":\"Joachim Pasel , Johannes Häusler , Ralf Peters , Detlef Stolten\",\"doi\":\"10.1039/d5cy00078e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>If methanol and ethanol are produced regeneratively from green H<sub>2</sub> and CO<sub>2</sub>, a mixture of these two can further react to form longer-chain branched alcohols such as iso-butanol, which can serve as sustainable feedstocks for the transportation and chemical sectors. NiPt catalysts have shown to be promising for this process. This study investigates the influence of the total metal loading Ni + Pt and the molar ratio of Ni to Pt on catalytic behavior. It was observed that the values for the total metal loading and the molar fraction of Pt must be set correctly and precisely during synthesis, as most of all the space–time yield of the catalyst, the conversion of ethanol, and the iso-butanol yield strongly depend on them. Differing mechanisms for the decomposition of acetaldehyde on pure Pt/C and NiPt/C are comparatively discussed. They explain the beneficial effect of Ni in avoiding the formation of carbonaceous deposits on the active centers. In addition, Ni was found to prevent particle growth due to its strong metal–support interaction.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 7\",\"pages\":\"Pages 2248-2260\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d5cy00078e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475325000875\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000875","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
NiPt catalysts for the synthesis of iso-butanol: the influence of molar ratio and total metal loading on activity and stability†
If methanol and ethanol are produced regeneratively from green H2 and CO2, a mixture of these two can further react to form longer-chain branched alcohols such as iso-butanol, which can serve as sustainable feedstocks for the transportation and chemical sectors. NiPt catalysts have shown to be promising for this process. This study investigates the influence of the total metal loading Ni + Pt and the molar ratio of Ni to Pt on catalytic behavior. It was observed that the values for the total metal loading and the molar fraction of Pt must be set correctly and precisely during synthesis, as most of all the space–time yield of the catalyst, the conversion of ethanol, and the iso-butanol yield strongly depend on them. Differing mechanisms for the decomposition of acetaldehyde on pure Pt/C and NiPt/C are comparatively discussed. They explain the beneficial effect of Ni in avoiding the formation of carbonaceous deposits on the active centers. In addition, Ni was found to prevent particle growth due to its strong metal–support interaction.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days