AERO:利用 1K 参数以下的预测模型进行自适应边缘云协调

Berend J. D. Gort;Godfrey M. Kibalya;Angelos Antonopoulos
{"title":"AERO:利用 1K 参数以下的预测模型进行自适应边缘云协调","authors":"Berend J. D. Gort;Godfrey M. Kibalya;Angelos Antonopoulos","doi":"10.1109/TMLCN.2025.3553100","DOIUrl":null,"url":null,"abstract":"Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"463-478"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935743","citationCount":"0","resultStr":"{\"title\":\"AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model\",\"authors\":\"Berend J. D. Gort;Godfrey M. Kibalya;Angelos Antonopoulos\",\"doi\":\"10.1109/TMLCN.2025.3553100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"3 \",\"pages\":\"463-478\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935743\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10935743/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10935743/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model
Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信