Shahid , Maqsood Hayat , Ali Raza , Shahid Akbar , Wajdi Alghamdi , Nadeem Iqbal , Quan Zou
{"title":"pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model","authors":"Shahid , Maqsood Hayat , Ali Raza , Shahid Akbar , Wajdi Alghamdi , Nadeem Iqbal , Quan Zou","doi":"10.1016/j.compbiolchem.2025.108441","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, cancer remains a major health challenge due to its high mortality rates. Traditional experimental approaches and therapies are resource-intensive and often cause significant side effects. Anticancer peptides (ACPs) have emerged as alternative therapeutic agents owing to their selectivity, safety, and potential to mitigate drug resistance. In this paper, we propose pACPs-DNN, a novel attention mechanism-based deep learning model developed for the accurate prediction of ACPs and non-ACPs. The pACPs-DNN model transforms input peptides into image representations using residue-wise energy contact matrix (RECM), substitution Matrix Representation (SMR), and Position Specific Scoring Matrix (PSSM) embeddings, followed by local binary pattern (LBP)-based decomposition to capture enhanced structural and local semantic features. These transformations generate novel feature sets, including RECM_LBP, LBP_SMR, and LBP_PSSM. Subsequently, a two-tier feature selection approach is employed to identify a high-ranking optimal feature set, which is then used to train an attention-based deep neural network. The proposed pACPs-DNN model achieves an impressive training accuracy of 96.91 % and an AUC of 0.98. To evaluate its generalization capability, the model was validated on independent datasets, demonstrating significant improvements of 5 % and 3.5 % in accuracy over existing models on the Ind-I and Ind-II datasets, respectively. The demonstrated efficacy and robustness of pACPs-DNN highlight its potential as a valuable tool for advancing drug discovery and academic research in cancer-related therapeutic development.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"117 ","pages":"Article 108441"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712500101X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model
Globally, cancer remains a major health challenge due to its high mortality rates. Traditional experimental approaches and therapies are resource-intensive and often cause significant side effects. Anticancer peptides (ACPs) have emerged as alternative therapeutic agents owing to their selectivity, safety, and potential to mitigate drug resistance. In this paper, we propose pACPs-DNN, a novel attention mechanism-based deep learning model developed for the accurate prediction of ACPs and non-ACPs. The pACPs-DNN model transforms input peptides into image representations using residue-wise energy contact matrix (RECM), substitution Matrix Representation (SMR), and Position Specific Scoring Matrix (PSSM) embeddings, followed by local binary pattern (LBP)-based decomposition to capture enhanced structural and local semantic features. These transformations generate novel feature sets, including RECM_LBP, LBP_SMR, and LBP_PSSM. Subsequently, a two-tier feature selection approach is employed to identify a high-ranking optimal feature set, which is then used to train an attention-based deep neural network. The proposed pACPs-DNN model achieves an impressive training accuracy of 96.91 % and an AUC of 0.98. To evaluate its generalization capability, the model was validated on independent datasets, demonstrating significant improvements of 5 % and 3.5 % in accuracy over existing models on the Ind-I and Ind-II datasets, respectively. The demonstrated efficacy and robustness of pACPs-DNN highlight its potential as a valuable tool for advancing drug discovery and academic research in cancer-related therapeutic development.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.