Stéphane Vitu , Kaoutar Berkalou , Jean-Louis Havet , Vincent Caqueret
{"title":"2,2,4-三甲基戊烷+丙酸乙酯二元体系:密度、Bancroft点和30,60和101.3 kPa时的汽液平衡","authors":"Stéphane Vitu , Kaoutar Berkalou , Jean-Louis Havet , Vincent Caqueret","doi":"10.1016/j.jct.2025.107486","DOIUrl":null,"url":null,"abstract":"<div><div>The 2,2,4-trimethylpentane (isooctane) – ethyl ethanoate binary system was experimentally investigated. The density of the mixture was measured using a vibrating-tube apparatus and is reported at temperatures <em>T</em> = (288.15, 298.15, 308.15 and 318.15) K. The mixture exhibits positive excess molar volumes. Isobaric vapor-liquid equilibrium (VLE) of the system were obtained at three pressures <em>P</em> = (30, 60 and 101.3) kPa. Pure components vapor pressures were also acquired over a range of <em>P</em> = (20 to 160) kPa. Equilibrium data were measured using a recirculation ebulliometer (Gillespie-type VLE cell).</div><div>The 2,2,4-trimethylpentane – ethyl ethanoate presents a Bancroft point within the investigated pressure range and, consequently, an azeotropic behavior at each studied pressure. The azeotropic coordinates, derived from the measured VLE data, are reported. A notable dependence of the azeotropic composition on pressure was observed.</div><div>The NRTL and Wilson activity coefficient models were used to correlate the VLE data. Temperature-dependent interaction parameters were determined, enabling precise correlation of the reported VLE data. The predictive UNIFAC (Dortmund) model was also tested. While it produced accurate results at 30 kPa, significant deviations were noted at higher pressures.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107486"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 2,2,4-trimethylpentane + ethyl propanoate binary system: density, Bancroft point and vapor–liquid equilibrium at 30, 60 and 101.3 kPa\",\"authors\":\"Stéphane Vitu , Kaoutar Berkalou , Jean-Louis Havet , Vincent Caqueret\",\"doi\":\"10.1016/j.jct.2025.107486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 2,2,4-trimethylpentane (isooctane) – ethyl ethanoate binary system was experimentally investigated. The density of the mixture was measured using a vibrating-tube apparatus and is reported at temperatures <em>T</em> = (288.15, 298.15, 308.15 and 318.15) K. The mixture exhibits positive excess molar volumes. Isobaric vapor-liquid equilibrium (VLE) of the system were obtained at three pressures <em>P</em> = (30, 60 and 101.3) kPa. Pure components vapor pressures were also acquired over a range of <em>P</em> = (20 to 160) kPa. Equilibrium data were measured using a recirculation ebulliometer (Gillespie-type VLE cell).</div><div>The 2,2,4-trimethylpentane – ethyl ethanoate presents a Bancroft point within the investigated pressure range and, consequently, an azeotropic behavior at each studied pressure. The azeotropic coordinates, derived from the measured VLE data, are reported. A notable dependence of the azeotropic composition on pressure was observed.</div><div>The NRTL and Wilson activity coefficient models were used to correlate the VLE data. Temperature-dependent interaction parameters were determined, enabling precise correlation of the reported VLE data. The predictive UNIFAC (Dortmund) model was also tested. While it produced accurate results at 30 kPa, significant deviations were noted at higher pressures.</div></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":\"207 \",\"pages\":\"Article 107486\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961425000400\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000400","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The 2,2,4-trimethylpentane + ethyl propanoate binary system: density, Bancroft point and vapor–liquid equilibrium at 30, 60 and 101.3 kPa
The 2,2,4-trimethylpentane (isooctane) – ethyl ethanoate binary system was experimentally investigated. The density of the mixture was measured using a vibrating-tube apparatus and is reported at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The mixture exhibits positive excess molar volumes. Isobaric vapor-liquid equilibrium (VLE) of the system were obtained at three pressures P = (30, 60 and 101.3) kPa. Pure components vapor pressures were also acquired over a range of P = (20 to 160) kPa. Equilibrium data were measured using a recirculation ebulliometer (Gillespie-type VLE cell).
The 2,2,4-trimethylpentane – ethyl ethanoate presents a Bancroft point within the investigated pressure range and, consequently, an azeotropic behavior at each studied pressure. The azeotropic coordinates, derived from the measured VLE data, are reported. A notable dependence of the azeotropic composition on pressure was observed.
The NRTL and Wilson activity coefficient models were used to correlate the VLE data. Temperature-dependent interaction parameters were determined, enabling precise correlation of the reported VLE data. The predictive UNIFAC (Dortmund) model was also tested. While it produced accurate results at 30 kPa, significant deviations were noted at higher pressures.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.