直径为4的距离等能图

B.J. Manjunatha , B.R. Rakshith , R.G. Veeresha
{"title":"直径为4的距离等能图","authors":"B.J. Manjunatha ,&nbsp;B.R. Rakshith ,&nbsp;R.G. Veeresha","doi":"10.1016/j.exco.2025.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be graphs with pairwise disjoint vertex sets. The graph <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is obtained from the graphs <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> (the corona product) and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> by joining each vertices of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><mspace></mspace><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> with every vertices in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Two connected graphs are called distance equienergetic graphs if their distance energies are the same. Several methods for constructing distance equienergetic graphs have been presented in the literature, most constructed distance equienergetic graphs have diameters of 2 or 3. So the problem of constructing distance equienergetic graphs of diameter greater than 3 would be interesting. Another interesting problem posed by Indulal (2020) is to construct a pair of graphs which are both adjacency equienergetic and distance equienergetic. Motivated by these two problems, in this paper, we obtain the distance spectrum of <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> when all these graphs are regular. As an application, we give a method to obtain distance equienergetic graphs of diameter 4. Also we construct a pair of graphs on <span><math><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>) which are both adjacency equienergetic and distance equienergetic graphs.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance equienergetic graphs of diameter 4\",\"authors\":\"B.J. Manjunatha ,&nbsp;B.R. Rakshith ,&nbsp;R.G. Veeresha\",\"doi\":\"10.1016/j.exco.2025.100184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be graphs with pairwise disjoint vertex sets. The graph <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is obtained from the graphs <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> (the corona product) and <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> by joining each vertices of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><mspace></mspace><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> with every vertices in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Two connected graphs are called distance equienergetic graphs if their distance energies are the same. Several methods for constructing distance equienergetic graphs have been presented in the literature, most constructed distance equienergetic graphs have diameters of 2 or 3. So the problem of constructing distance equienergetic graphs of diameter greater than 3 would be interesting. Another interesting problem posed by Indulal (2020) is to construct a pair of graphs which are both adjacency equienergetic and distance equienergetic. Motivated by these two problems, in this paper, we obtain the distance spectrum of <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> when all these graphs are regular. As an application, we give a method to obtain distance equienergetic graphs of diameter 4. Also we construct a pair of graphs on <span><math><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>) which are both adjacency equienergetic and distance equienergetic graphs.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"7 \",\"pages\":\"Article 100184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X25000114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X25000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设Γ1, Γ2, Γ3为顶点集不相交的图。图Θ(Γ1,Γ2Γ3)从图形获得Γ1∘Γ3(电晕产品)和Γ2通过加入Γ1中每个顶点Γ1∘Γ3Γ2中每个顶点。如果两个连通图的距离能相同,则称为距离等能图。文献中提出了几种构造距离等能图的方法,大多数构造的距离等能图的直径为2或3。所以构造直径大于3的距离等能图的问题会很有趣。Indulal(2020)提出的另一个有趣的问题是构造一对同时具有邻接等能和距离等能的图。在这两个问题的推动下,本文得到了Θ(Γ1,Γ2,Γ3)图均为正则时的距离谱。作为应用,给出了一种获取直径为4的距离等能图的方法。并在2n+1个顶点(n≥6)上构造了一对图,它们都是邻接等能图和距离等能图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance equienergetic graphs of diameter 4
Let Γ1, Γ2 and Γ3 be graphs with pairwise disjoint vertex sets. The graph Θ(Γ1,Γ2,Γ3) is obtained from the graphs Γ1Γ3 (the corona product) and Γ2 by joining each vertices of Γ1 in Γ1Γ3 with every vertices in Γ2. Two connected graphs are called distance equienergetic graphs if their distance energies are the same. Several methods for constructing distance equienergetic graphs have been presented in the literature, most constructed distance equienergetic graphs have diameters of 2 or 3. So the problem of constructing distance equienergetic graphs of diameter greater than 3 would be interesting. Another interesting problem posed by Indulal (2020) is to construct a pair of graphs which are both adjacency equienergetic and distance equienergetic. Motivated by these two problems, in this paper, we obtain the distance spectrum of Θ(Γ1,Γ2,Γ3) when all these graphs are regular. As an application, we give a method to obtain distance equienergetic graphs of diameter 4. Also we construct a pair of graphs on 2n+1 vertices (n6) which are both adjacency equienergetic and distance equienergetic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信