Y.Y. Hu , X.T. Wang , Y.J. Ma , J.L. Chen , X.J. Zhao , J. Cheng , T.R. Xu , W.L. Zhao , X.Y. Song , S. Wu , Z.H. Cao
{"title":"体心立方难熔高熵合金严重晶格畸变引起的强固溶体强化","authors":"Y.Y. Hu , X.T. Wang , Y.J. Ma , J.L. Chen , X.J. Zhao , J. Cheng , T.R. Xu , W.L. Zhao , X.Y. Song , S. Wu , Z.H. Cao","doi":"10.1016/j.scriptamat.2025.116671","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti<sub>35</sub>Zr<sub>15</sub>V<sub>25</sub>Nb<sub>25</sub> HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"263 ","pages":"Article 116671"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong solid solution strengthening caused by severe lattice distortion in body-centered cubic refractory high-entropy alloys\",\"authors\":\"Y.Y. Hu , X.T. Wang , Y.J. Ma , J.L. Chen , X.J. Zhao , J. Cheng , T.R. Xu , W.L. Zhao , X.Y. Song , S. Wu , Z.H. Cao\",\"doi\":\"10.1016/j.scriptamat.2025.116671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti<sub>35</sub>Zr<sub>15</sub>V<sub>25</sub>Nb<sub>25</sub> HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"263 \",\"pages\":\"Article 116671\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225001344\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strong solid solution strengthening caused by severe lattice distortion in body-centered cubic refractory high-entropy alloys
Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti35Zr15V25Nb25 HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.