体心立方难熔高熵合金严重晶格畸变引起的强固溶体强化

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Y.Y. Hu , X.T. Wang , Y.J. Ma , J.L. Chen , X.J. Zhao , J. Cheng , T.R. Xu , W.L. Zhao , X.Y. Song , S. Wu , Z.H. Cao
{"title":"体心立方难熔高熵合金严重晶格畸变引起的强固溶体强化","authors":"Y.Y. Hu ,&nbsp;X.T. Wang ,&nbsp;Y.J. Ma ,&nbsp;J.L. Chen ,&nbsp;X.J. Zhao ,&nbsp;J. Cheng ,&nbsp;T.R. Xu ,&nbsp;W.L. Zhao ,&nbsp;X.Y. Song ,&nbsp;S. Wu ,&nbsp;Z.H. Cao","doi":"10.1016/j.scriptamat.2025.116671","DOIUrl":null,"url":null,"abstract":"<div><div>Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti<sub>35</sub>Zr<sub>15</sub>V<sub>25</sub>Nb<sub>25</sub> HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"263 ","pages":"Article 116671"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong solid solution strengthening caused by severe lattice distortion in body-centered cubic refractory high-entropy alloys\",\"authors\":\"Y.Y. Hu ,&nbsp;X.T. Wang ,&nbsp;Y.J. Ma ,&nbsp;J.L. Chen ,&nbsp;X.J. Zhao ,&nbsp;J. Cheng ,&nbsp;T.R. Xu ,&nbsp;W.L. Zhao ,&nbsp;X.Y. Song ,&nbsp;S. Wu ,&nbsp;Z.H. Cao\",\"doi\":\"10.1016/j.scriptamat.2025.116671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti<sub>35</sub>Zr<sub>15</sub>V<sub>25</sub>Nb<sub>25</sub> HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"263 \",\"pages\":\"Article 116671\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225001344\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子尺寸失配是合金固溶强化的根源之一。在这项研究中,我们报道了通过调整单相体心立方tizrvnb基难熔高熵合金(HEAs)的原子尺寸错配,实现了强固溶强化。结果表明:随着Zr含量最大原子半径的增加,铸件的屈服强度从680 MPa显著提高到998 MPa;其中,Ti35Zr15V25Nb25 HEA表现出918 MPa的高屈服强度和16%的延展性。当原子尺寸失配从3.43%增加到4.95%时,固溶强化导致318 MPa强度增加,其中原子尺寸失配的贡献达到77%。强固溶强化主要源于晶格畸变的增强,这是位错运动的强大屏障,由此产生的高密度位错和激活的多滑移系统导致HEAs具有出色的应变硬化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong solid solution strengthening caused by severe lattice distortion in body-centered cubic refractory high-entropy alloys

Strong solid solution strengthening caused by severe lattice distortion in body-centered cubic refractory high-entropy alloys
Atomic size misfit is one of the origins of solid-solution strengthening in alloys. In this study, we reported a strong solid-solution strengthening via tuning the atomic size misfit in the single-phase body-centered cubic TiZrVNb-based refractory high-entropy alloys (HEAs). The results suggest that the yield strength of the cast samples significantly increased from 680 MPa to 998 MPa with increasing the largest atomic radius Zr content. Among them, the Ti35Zr15V25Nb25 HEA exhibits the best combination of high yield strength of 918 MPa and ductility of 16 %. The solid-solution strengthening causes the 318 MPa strength increment as the atomic size misfit increases from 3.43 % to 4.95 %, where the contribution of atomic size misfit reaches 77 %. Strong solid-solution strengthening mainly originates from the enhanced lattice distortion acting as a strong barrier to dislocation motion, where the resultant high-density dislocations and the activated multiple slip systems lead to the outstanding strain-hardening capacity of the HEAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信