Yao Mu , Can Ge , Fangyue Wang , Xiuyu Li , He Sun , Haiou Gu , Feng Yuan
{"title":"从误差椭圆到贝叶斯估计:UPb测年中T-W图的优化策略","authors":"Yao Mu , Can Ge , Fangyue Wang , Xiuyu Li , He Sun , Haiou Gu , Feng Yuan","doi":"10.1016/j.chemer.2025.126286","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the application of the T-W diagram (Tera-Wasserburg Concordia Diagram) in uranium‑lead (U<img>Pb) isotope dating technology, especially for samples containing common lead. The core of the research lies in evaluating and optimizing the accuracy, precision, and determination of confidence intervals of T-W diagram dating. We propose a new formula based on the geometric mean method for correcting the calculation of error ellipses to reduce bias from high data noise levels. The study further elaborates on the application of the error-correlated independent weighted least squares method in determining the confidence intervals of linear models and intersection ages. Through simulation analysis, we evaluate the performance of least square methods in terms of dating accuracy and precision with both well-distributed and poorly distributed data. In view of the limitations of least square methods, a Bayesian method based on intercept constraints or the evolution model of terrestrial common lead is proposed, significantly improving the accuracy, precision, and success rate of dating analysis. The new methodology of this study not only provides a more reliable analytical tool for the field of radiometric dating, but is also applicable to single-point age analysis.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 3","pages":"Article 126286"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From error ellipse to Bayesian estimation: Strategies for optimizing T-W diagrams in UPb dating\",\"authors\":\"Yao Mu , Can Ge , Fangyue Wang , Xiuyu Li , He Sun , Haiou Gu , Feng Yuan\",\"doi\":\"10.1016/j.chemer.2025.126286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the application of the T-W diagram (Tera-Wasserburg Concordia Diagram) in uranium‑lead (U<img>Pb) isotope dating technology, especially for samples containing common lead. The core of the research lies in evaluating and optimizing the accuracy, precision, and determination of confidence intervals of T-W diagram dating. We propose a new formula based on the geometric mean method for correcting the calculation of error ellipses to reduce bias from high data noise levels. The study further elaborates on the application of the error-correlated independent weighted least squares method in determining the confidence intervals of linear models and intersection ages. Through simulation analysis, we evaluate the performance of least square methods in terms of dating accuracy and precision with both well-distributed and poorly distributed data. In view of the limitations of least square methods, a Bayesian method based on intercept constraints or the evolution model of terrestrial common lead is proposed, significantly improving the accuracy, precision, and success rate of dating analysis. The new methodology of this study not only provides a more reliable analytical tool for the field of radiometric dating, but is also applicable to single-point age analysis.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"85 3\",\"pages\":\"Article 126286\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281925000418\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281925000418","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
From error ellipse to Bayesian estimation: Strategies for optimizing T-W diagrams in UPb dating
This study examines the application of the T-W diagram (Tera-Wasserburg Concordia Diagram) in uranium‑lead (UPb) isotope dating technology, especially for samples containing common lead. The core of the research lies in evaluating and optimizing the accuracy, precision, and determination of confidence intervals of T-W diagram dating. We propose a new formula based on the geometric mean method for correcting the calculation of error ellipses to reduce bias from high data noise levels. The study further elaborates on the application of the error-correlated independent weighted least squares method in determining the confidence intervals of linear models and intersection ages. Through simulation analysis, we evaluate the performance of least square methods in terms of dating accuracy and precision with both well-distributed and poorly distributed data. In view of the limitations of least square methods, a Bayesian method based on intercept constraints or the evolution model of terrestrial common lead is proposed, significantly improving the accuracy, precision, and success rate of dating analysis. The new methodology of this study not only provides a more reliable analytical tool for the field of radiometric dating, but is also applicable to single-point age analysis.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry