Alessia De Biase , Nanna Maria Sijtsema , Lisanne V. van Dijk , Roel Steenbakkers , Johannes A. Langendijk , Peter van Ooijen
{"title":"不确定性感知深度学习用于口咽癌原发肿瘤和病理淋巴结的分割:来自多中心队列的见解","authors":"Alessia De Biase , Nanna Maria Sijtsema , Lisanne V. van Dijk , Roel Steenbakkers , Johannes A. Langendijk , Peter van Ooijen","doi":"10.1016/j.compmedimag.2025.102535","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort.</div></div><div><h3>Methods</h3><div>We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions.</div></div><div><h3>Results</h3><div>Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and −0.66 for GTVp and GTVln) in the external set, indicating significant calibration.</div></div><div><h3>Conclusion</h3><div>Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"123 ","pages":"Article 102535"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort\",\"authors\":\"Alessia De Biase , Nanna Maria Sijtsema , Lisanne V. van Dijk , Roel Steenbakkers , Johannes A. Langendijk , Peter van Ooijen\",\"doi\":\"10.1016/j.compmedimag.2025.102535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort.</div></div><div><h3>Methods</h3><div>We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions.</div></div><div><h3>Results</h3><div>Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and −0.66 for GTVp and GTVln) in the external set, indicating significant calibration.</div></div><div><h3>Conclusion</h3><div>Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"123 \",\"pages\":\"Article 102535\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611125000448\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000448","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort
Purpose
Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort.
Methods
We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions.
Results
Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and −0.66 for GTVp and GTVln) in the external set, indicating significant calibration.
Conclusion
Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.