{"title":"非线性最优控制强化学习中的策略迭代方法教程综述","authors":"Yujia Wang , Xinji Zhu , Zhe Wu","doi":"10.1016/j.dche.2025.100231","DOIUrl":null,"url":null,"abstract":"<div><div>Reinforcement learning (RL) has been a powerful framework for designing optimal controllers for nonlinear systems. This tutorial review provides a comprehensive exploration of RL techniques, with a particular focus on policy iteration methods for the development of optimal controllers. We discuss key theoretical aspects, including closed-loop stability and convergence analysis of learning algorithms. Additionally, the review addresses practical challenges encountered in real-world applications, such as the development of accurate process models, incorporating safety guarantees during learning, leveraging physics-informed machine learning and transfer learning techniques to overcome learning difficulties, managing model uncertainties, and enabling scalability through distributed RL. To demonstrate the effectiveness of these approaches, a simulation example of a chemical reactor is presented, with open-source code made available on GitHub. The review concludes with a discussion of open research questions and future directions in RL-based control of nonlinear systems.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100231"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tutorial review of policy iteration methods in reinforcement learning for nonlinear optimal control\",\"authors\":\"Yujia Wang , Xinji Zhu , Zhe Wu\",\"doi\":\"10.1016/j.dche.2025.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reinforcement learning (RL) has been a powerful framework for designing optimal controllers for nonlinear systems. This tutorial review provides a comprehensive exploration of RL techniques, with a particular focus on policy iteration methods for the development of optimal controllers. We discuss key theoretical aspects, including closed-loop stability and convergence analysis of learning algorithms. Additionally, the review addresses practical challenges encountered in real-world applications, such as the development of accurate process models, incorporating safety guarantees during learning, leveraging physics-informed machine learning and transfer learning techniques to overcome learning difficulties, managing model uncertainties, and enabling scalability through distributed RL. To demonstrate the effectiveness of these approaches, a simulation example of a chemical reactor is presented, with open-source code made available on GitHub. The review concludes with a discussion of open research questions and future directions in RL-based control of nonlinear systems.</div></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"15 \",\"pages\":\"Article 100231\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508125000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A tutorial review of policy iteration methods in reinforcement learning for nonlinear optimal control
Reinforcement learning (RL) has been a powerful framework for designing optimal controllers for nonlinear systems. This tutorial review provides a comprehensive exploration of RL techniques, with a particular focus on policy iteration methods for the development of optimal controllers. We discuss key theoretical aspects, including closed-loop stability and convergence analysis of learning algorithms. Additionally, the review addresses practical challenges encountered in real-world applications, such as the development of accurate process models, incorporating safety guarantees during learning, leveraging physics-informed machine learning and transfer learning techniques to overcome learning difficulties, managing model uncertainties, and enabling scalability through distributed RL. To demonstrate the effectiveness of these approaches, a simulation example of a chemical reactor is presented, with open-source code made available on GitHub. The review concludes with a discussion of open research questions and future directions in RL-based control of nonlinear systems.