双曲空间中占星球p-Christoffel-Minkowski问题

IF 1.3 2区 数学 Q1 MATHEMATICS
Tianci Luo, Yong Wei
{"title":"双曲空间中占星球p-Christoffel-Minkowski问题","authors":"Tianci Luo,&nbsp;Yong Wei","doi":"10.1016/j.na.2025.113799","DOIUrl":null,"url":null,"abstract":"<div><div>The horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem, introduced by Li and Xu (2022), involves prescribing the <span><math><mi>k</mi></math></span>-th horospherical <span><math><mi>p</mi></math></span>-surface area measure for <span><math><mi>h</mi></math></span>-convex domains in hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. This problem generalizes the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Christoffel–Minkowski problem in Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. In this paper, we study a fully nonlinear equation associated with this problem and establish the existence of a uniformly <span><math><mi>h</mi></math></span>-convex solution under suitable assumptions on the prescribed function. The proof relies on a full rank theorem, which we demonstrate using a viscosity approach inspired by the work of Bryan et al. (2023).</div><div>When <span><math><mrow><mi>p</mi><mo>=</mo><mn>0</mn></mrow></math></span>, the horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> reduces to a Nirenberg-type problem on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in conformal geometry. As a consequence, our result also provides the existence of solutions to this Nirenberg-type problem.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"257 ","pages":"Article 113799"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The horospherical p-Christoffel–Minkowski problem in hyperbolic space\",\"authors\":\"Tianci Luo,&nbsp;Yong Wei\",\"doi\":\"10.1016/j.na.2025.113799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem, introduced by Li and Xu (2022), involves prescribing the <span><math><mi>k</mi></math></span>-th horospherical <span><math><mi>p</mi></math></span>-surface area measure for <span><math><mi>h</mi></math></span>-convex domains in hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. This problem generalizes the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Christoffel–Minkowski problem in Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. In this paper, we study a fully nonlinear equation associated with this problem and establish the existence of a uniformly <span><math><mi>h</mi></math></span>-convex solution under suitable assumptions on the prescribed function. The proof relies on a full rank theorem, which we demonstrate using a viscosity approach inspired by the work of Bryan et al. (2023).</div><div>When <span><math><mrow><mi>p</mi><mo>=</mo><mn>0</mn></mrow></math></span>, the horospherical <span><math><mi>p</mi></math></span>-Christoffel–Minkowski problem in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> reduces to a Nirenberg-type problem on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in conformal geometry. As a consequence, our result also provides the existence of solutions to this Nirenberg-type problem.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"257 \",\"pages\":\"Article 113799\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000537\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000537","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由Li和Xu(2022)提出的星座球p-Christoffel-Minkowski问题,涉及规定双曲空间Hn+1中h-凸域的第k个星座球p-表面积测度。这个问题在欧几里德空间Rn+1中推广了经典Lp克里斯托费尔-闵可夫斯基问题。本文研究了与此问题相关的一个完全非线性方程,并在给定函数的适当假设下,证明了h-凸解的存在性。该证明依赖于全秩定理,我们使用受Bryan等人(2023)的工作启发的粘度方法来证明该定理。当p=0时,共形几何中Hn+1上的全球面p- christoffel - minkowski问题化为Sn上的nirenberg型问题。因此,我们的结果也提供了该尼伦堡型问题解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The horospherical p-Christoffel–Minkowski problem in hyperbolic space
The horospherical p-Christoffel–Minkowski problem, introduced by Li and Xu (2022), involves prescribing the k-th horospherical p-surface area measure for h-convex domains in hyperbolic space Hn+1. This problem generalizes the classical Lp Christoffel–Minkowski problem in Euclidean space Rn+1. In this paper, we study a fully nonlinear equation associated with this problem and establish the existence of a uniformly h-convex solution under suitable assumptions on the prescribed function. The proof relies on a full rank theorem, which we demonstrate using a viscosity approach inspired by the work of Bryan et al. (2023).
When p=0, the horospherical p-Christoffel–Minkowski problem in Hn+1 reduces to a Nirenberg-type problem on Sn in conformal geometry. As a consequence, our result also provides the existence of solutions to this Nirenberg-type problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信