小波变换与人工智能技术在医疗保健中的应用综述

Samiul Based Shuvo, Syed Samiul Alam, Syeda Umme Ayman, Arbil Chakma, Massimo Salvi, Silvia Seoni, Prabal Datta Barua, Filippo Molinari, U. Rajendra Acharya
{"title":"小波变换与人工智能技术在医疗保健中的应用综述","authors":"Samiul Based Shuvo, Syed Samiul Alam, Syeda Umme Ayman, Arbil Chakma, Massimo Salvi, Silvia Seoni, Prabal Datta Barua, Filippo Molinari, U. Rajendra Acharya","doi":"10.1002/widm.70007","DOIUrl":null,"url":null,"abstract":"The integration of wavelet transformation and artificial intelligence techniques has demonstrated significant potential in healthcare applications. Wavelet analysis enables multi‐scale signal decomposition and feature extraction that, when combined with machine and deep learning approaches, enhance the accuracy and efficiency of medical data analysis. This systematic review synthesizes 112 relevant studies from 2013 to 2023 exploring wavelet‐based artificial intelligence in healthcare. Our analysis reveals that the discrete wavelet transform dominates (43% of studies), primarily used for feature extraction from biosignals (82%) and medical images. Major applications include cardiac abnormality detection (29%), neurological disorder diagnosis (27%), and mental health assessment (16%), with classification accuracies frequently exceeding 95%. Key findings indicate a shift from traditional machine learning to deep learning approaches after 2020, with emerging trends in hybrid architectures. The review identifies critical challenges in computational efficiency, optimal wavelet selection, and clinical validation. Future developments should focus on real‐time processing optimization, interpretable deep learning models, multi‐modal data fusion, and validation on larger clinical datasets, advancing the translation of these systems into practical clinical tools.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Wavelet Transformation and Artificial Intelligence Techniques in Healthcare: A Systemic Review\",\"authors\":\"Samiul Based Shuvo, Syed Samiul Alam, Syeda Umme Ayman, Arbil Chakma, Massimo Salvi, Silvia Seoni, Prabal Datta Barua, Filippo Molinari, U. Rajendra Acharya\",\"doi\":\"10.1002/widm.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of wavelet transformation and artificial intelligence techniques has demonstrated significant potential in healthcare applications. Wavelet analysis enables multi‐scale signal decomposition and feature extraction that, when combined with machine and deep learning approaches, enhance the accuracy and efficiency of medical data analysis. This systematic review synthesizes 112 relevant studies from 2013 to 2023 exploring wavelet‐based artificial intelligence in healthcare. Our analysis reveals that the discrete wavelet transform dominates (43% of studies), primarily used for feature extraction from biosignals (82%) and medical images. Major applications include cardiac abnormality detection (29%), neurological disorder diagnosis (27%), and mental health assessment (16%), with classification accuracies frequently exceeding 95%. Key findings indicate a shift from traditional machine learning to deep learning approaches after 2020, with emerging trends in hybrid architectures. The review identifies critical challenges in computational efficiency, optimal wavelet selection, and clinical validation. Future developments should focus on real‐time processing optimization, interpretable deep learning models, multi‐modal data fusion, and validation on larger clinical datasets, advancing the translation of these systems into practical clinical tools.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.70007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小波变换与人工智能技术的集成在医疗保健应用中显示出巨大的潜力。小波分析可以实现多尺度信号分解和特征提取,当与机器和深度学习方法相结合时,可以提高医疗数据分析的准确性和效率。本系统综述综合了2013年至2023年的112项相关研究,探索了基于小波的人工智能在医疗保健领域的应用。我们的分析表明,离散小波变换占主导地位(43%的研究),主要用于生物信号(82%)和医学图像的特征提取。主要应用包括心脏异常检测(29%)、神经系统疾病诊断(27%)和精神健康评估(16%),分类准确率经常超过95%。关键发现表明,2020年之后,传统机器学习方法将转向深度学习方法,混合架构将出现新趋势。该综述确定了计算效率、最佳小波选择和临床验证方面的关键挑战。未来的发展应该集中在实时处理优化、可解释的深度学习模型、多模态数据融合和大型临床数据集的验证上,推动这些系统转化为实用的临床工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Wavelet Transformation and Artificial Intelligence Techniques in Healthcare: A Systemic Review
The integration of wavelet transformation and artificial intelligence techniques has demonstrated significant potential in healthcare applications. Wavelet analysis enables multi‐scale signal decomposition and feature extraction that, when combined with machine and deep learning approaches, enhance the accuracy and efficiency of medical data analysis. This systematic review synthesizes 112 relevant studies from 2013 to 2023 exploring wavelet‐based artificial intelligence in healthcare. Our analysis reveals that the discrete wavelet transform dominates (43% of studies), primarily used for feature extraction from biosignals (82%) and medical images. Major applications include cardiac abnormality detection (29%), neurological disorder diagnosis (27%), and mental health assessment (16%), with classification accuracies frequently exceeding 95%. Key findings indicate a shift from traditional machine learning to deep learning approaches after 2020, with emerging trends in hybrid architectures. The review identifies critical challenges in computational efficiency, optimal wavelet selection, and clinical validation. Future developments should focus on real‐time processing optimization, interpretable deep learning models, multi‐modal data fusion, and validation on larger clinical datasets, advancing the translation of these systems into practical clinical tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信