Md Palash Uddin, Yong Xiang, Mahmudul Hasan, Jun Bai, Yao Zhao, Longxiang Gao
{"title":"A Systematic Literature Review of Robust Federated Learning: Issues, Solutions, and Future Research Directions","authors":"Md Palash Uddin, Yong Xiang, Mahmudul Hasan, Jun Bai, Yao Zhao, Longxiang Gao","doi":"10.1145/3727643","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) has emerged as a promising paradigm for training machine learning models across distributed devices while preserving their data privacy. However, the robustness of FL models against adversarial data and model attacks, noisy updates, and label-flipped data issues remain a critical concern. In this paper, we present a systematic literature review using the PRISMA framework to comprehensively analyze existing research on robust FL. Through a rigorous selection process using six key databases (ACM Digital Library, IEEE Xplore, ScienceDirect, Springer, Web of Science, and Scopus), we identify and categorize 244 studies into eight themes of ensuring robustness in FL: objective regularization, optimizer modification, differential privacy employment, additional dataset requirement and decentralization orchestration, manifold, client selection, new aggregation algorithms, and aggregation hyperparameter tuning. We synthesize the findings from these themes, highlighting the various approaches and their potential gaps proposed to enhance the robustness of FL models. Furthermore, we discuss future research directions, focusing on the potential of hybrid approaches, ensemble techniques, and adaptive mechanisms for addressing the challenges associated with robust FL. This review not only provides a comprehensive overview of the state-of-the-art in robust FL but also serves as a roadmap for researchers and practitioners seeking to advance the field and develop more robust and resilient FL systems.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"15 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3727643","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Systematic Literature Review of Robust Federated Learning: Issues, Solutions, and Future Research Directions
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models across distributed devices while preserving their data privacy. However, the robustness of FL models against adversarial data and model attacks, noisy updates, and label-flipped data issues remain a critical concern. In this paper, we present a systematic literature review using the PRISMA framework to comprehensively analyze existing research on robust FL. Through a rigorous selection process using six key databases (ACM Digital Library, IEEE Xplore, ScienceDirect, Springer, Web of Science, and Scopus), we identify and categorize 244 studies into eight themes of ensuring robustness in FL: objective regularization, optimizer modification, differential privacy employment, additional dataset requirement and decentralization orchestration, manifold, client selection, new aggregation algorithms, and aggregation hyperparameter tuning. We synthesize the findings from these themes, highlighting the various approaches and their potential gaps proposed to enhance the robustness of FL models. Furthermore, we discuss future research directions, focusing on the potential of hybrid approaches, ensemble techniques, and adaptive mechanisms for addressing the challenges associated with robust FL. This review not only provides a comprehensive overview of the state-of-the-art in robust FL but also serves as a roadmap for researchers and practitioners seeking to advance the field and develop more robust and resilient FL systems.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.