无表面张力两相Navier-Stokes流的任意拉格朗日-欧拉界面跟踪方法的最优收敛性

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Buyang Li, Shu Ma, Weifeng Qiu
{"title":"无表面张力两相Navier-Stokes流的任意拉格朗日-欧拉界面跟踪方法的最优收敛性","authors":"Buyang Li, Shu Ma, Weifeng Qiu","doi":"10.1093/imanum/draf003","DOIUrl":null,"url":null,"abstract":"Optimal-order convergence in the $H^{1}$ norm is proved for an arbitrary Lagrangian–Eulerian (ALE) interface tracking finite element method (FEM) for the sharp interface model of two-phase Navier–Stokes flow without surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior mesh points move according to a harmonic extension of the interface velocity. The error of the semidiscrete ALE interface tracking FEM is shown to be $O(h^{k})$ in the $L^\\infty (0, T; H^{1}(\\varOmega ))$ norm for the Taylor–Hood finite elements of degree $k \\geqslant 2$. This high-order convergence is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experiments illustrate and complement the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence of the arbitrary Lagrangian–Eulerian interface tracking method for two-phase Navier–Stokes flow without surface tension\",\"authors\":\"Buyang Li, Shu Ma, Weifeng Qiu\",\"doi\":\"10.1093/imanum/draf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal-order convergence in the $H^{1}$ norm is proved for an arbitrary Lagrangian–Eulerian (ALE) interface tracking finite element method (FEM) for the sharp interface model of two-phase Navier–Stokes flow without surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior mesh points move according to a harmonic extension of the interface velocity. The error of the semidiscrete ALE interface tracking FEM is shown to be $O(h^{k})$ in the $L^\\\\infty (0, T; H^{1}(\\\\varOmega ))$ norm for the Taylor–Hood finite elements of degree $k \\\\geqslant 2$. This high-order convergence is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experiments illustrate and complement the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf003\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用高阶曲线演化网格,证明了任意lagrange - eulerian (ALE)界面跟踪有限元法(FEM)在无表面张力的两相Navier-Stokes流动尖锐界面模型上$H^{1}$范数的最优收敛性。在该方法中,界面网格点随流体的速度移动以跟踪流体两相之间的尖锐界面,内部网格点根据界面速度的调和扩展移动。在阶次为$k \geqslant 2$的泰勒-胡德有限元的$L^\infty (0, T; H^{1}(\varOmega ))$范数中,半离散ALE界面跟踪有限元的误差为$O(h^{k})$。这种高阶收敛是通过利用流体的一个相所占据的每个子域上的解的分段平滑性来实现的,依赖于整个移动域的低全局正则性。数值实验验证并补充了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence of the arbitrary Lagrangian–Eulerian interface tracking method for two-phase Navier–Stokes flow without surface tension
Optimal-order convergence in the $H^{1}$ norm is proved for an arbitrary Lagrangian–Eulerian (ALE) interface tracking finite element method (FEM) for the sharp interface model of two-phase Navier–Stokes flow without surface tension, using high-order curved evolving mesh. In this method, the interfacial mesh points move with the fluid’s velocity to track the sharp interface between two phases of the fluid, and the interior mesh points move according to a harmonic extension of the interface velocity. The error of the semidiscrete ALE interface tracking FEM is shown to be $O(h^{k})$ in the $L^\infty (0, T; H^{1}(\varOmega ))$ norm for the Taylor–Hood finite elements of degree $k \geqslant 2$. This high-order convergence is achieved by utilizing the piecewise smoothness of the solution on each subdomain occupied by one phase of the fluid, relying on a low global regularity on the entire moving domain. Numerical experiments illustrate and complement the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信