硫辛酸对重复剂量索利那新诱导的小鼠记忆缺陷的保护作用:硝基氧化应激的作用。

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Leonardo Pimentel Dantas, Emanuel Carneiro de Vasconcelos, Carla da Silva Cunha, Pauliane Valeska Chagas Batista, Morgana Carla Souza Torres, Caren Nádia Soares de Sousa, Gabriel Angelo de Aquino, Manuel Alves Dos Santos Junior, Pedro Henrique Freitas de Rezende, Wilson Silva de Vasconcelos, Manoel Cláudio Azevedo Patrocinio, Silvânia Maria Mendes Vasconcelos
{"title":"硫辛酸对重复剂量索利那新诱导的小鼠记忆缺陷的保护作用:硝基氧化应激的作用。","authors":"Leonardo Pimentel Dantas, Emanuel Carneiro de Vasconcelos, Carla da Silva Cunha, Pauliane Valeska Chagas Batista, Morgana Carla Souza Torres, Caren Nádia Soares de Sousa, Gabriel Angelo de Aquino, Manuel Alves Dos Santos Junior, Pedro Henrique Freitas de Rezende, Wilson Silva de Vasconcelos, Manoel Cláudio Azevedo Patrocinio, Silvânia Maria Mendes Vasconcelos","doi":"10.1007/s11011-025-01586-x","DOIUrl":null,"url":null,"abstract":"<p><p>Solifenacin (Sol) is one of the most used antimuscarinics for the treatment of bladder dysfunction and there are no conclusive studies on its effects on learning and memory after long-term use. Since substances with antioxidant action, such as alpha-lipoic acid (ALA), have shown protective action in memory deficit and Alzheimer's disease, we decided to study the effects of Sol alone or associated with ALA in behavioral tests of memory and its relation to nitro-oxidative stress in different brain areas. Mice received saline or Sol p.o. for 14 or 28 days. ALA groups received: (a) saline + ALA, (b) Sol for 14 days and Sol + ALA from the 15th to the 28th days and, (c) Sol + ALA for 28 days. Behavioral tests were performed and oxidative changes (lipid peroxidation) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were also determined. Sol produced memory alterations in the mice, reducing the step-down latency and the recognition index in the novel object recognition test. Sol also increased lipid peroxidation in PFC, HC and ST and nitrite levels in the HC. On the other hand, ALA associated with Sol was able to restrict the effects caused by Sol alone, both in relation to nitro-oxidative parameters and in relation to behavioral tests. Taken together, our data suggest that ALA can be administered as an adjunctive drug in patients requiring prolonged use of Sol to mitigate these adverse central nervous system effects. However, clinical studies need to be performed to corroborate preclinical research.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 4","pages":"165"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effects of alpha-lipoic acid on memory deficit induced by repeated doses of solifenacin in mice: the role of nitro-oxidative stress.\",\"authors\":\"Leonardo Pimentel Dantas, Emanuel Carneiro de Vasconcelos, Carla da Silva Cunha, Pauliane Valeska Chagas Batista, Morgana Carla Souza Torres, Caren Nádia Soares de Sousa, Gabriel Angelo de Aquino, Manuel Alves Dos Santos Junior, Pedro Henrique Freitas de Rezende, Wilson Silva de Vasconcelos, Manoel Cláudio Azevedo Patrocinio, Silvânia Maria Mendes Vasconcelos\",\"doi\":\"10.1007/s11011-025-01586-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solifenacin (Sol) is one of the most used antimuscarinics for the treatment of bladder dysfunction and there are no conclusive studies on its effects on learning and memory after long-term use. Since substances with antioxidant action, such as alpha-lipoic acid (ALA), have shown protective action in memory deficit and Alzheimer's disease, we decided to study the effects of Sol alone or associated with ALA in behavioral tests of memory and its relation to nitro-oxidative stress in different brain areas. Mice received saline or Sol p.o. for 14 or 28 days. ALA groups received: (a) saline + ALA, (b) Sol for 14 days and Sol + ALA from the 15th to the 28th days and, (c) Sol + ALA for 28 days. Behavioral tests were performed and oxidative changes (lipid peroxidation) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were also determined. Sol produced memory alterations in the mice, reducing the step-down latency and the recognition index in the novel object recognition test. Sol also increased lipid peroxidation in PFC, HC and ST and nitrite levels in the HC. On the other hand, ALA associated with Sol was able to restrict the effects caused by Sol alone, both in relation to nitro-oxidative parameters and in relation to behavioral tests. Taken together, our data suggest that ALA can be administered as an adjunctive drug in patients requiring prolonged use of Sol to mitigate these adverse central nervous system effects. However, clinical studies need to be performed to corroborate preclinical research.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 4\",\"pages\":\"165\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01586-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01586-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

索利那新(Solifenacin, Sol)是治疗膀胱功能障碍最常用的抗蛇毒素类药物之一,长期使用后对学习记忆的影响尚无定论。由于具有抗氧化作用的物质,如α -硫辛酸(ALA),已显示出对记忆缺陷和阿尔茨海默病的保护作用,我们决定研究Sol单独或与ALA相关的记忆行为测试及其与不同脑区硝基氧化应激的关系。小鼠分别接受生理盐水或Sol p.o.治疗14或28天。ALA组给予:(a)生理盐水+ ALA, (b) Sol(14天)和Sol + ALA(15 ~ 28天),(c) Sol + ALA(28天)。进行行为测试,并测定前额皮质(PFC)、海马体(HC)和纹状体(ST)中的氧化变化(脂质过氧化)和亚硝酸盐。在新物体识别测试中,Sol对小鼠产生了记忆改变,减少了降压延迟和识别指数。溶胶还增加了PFC、HC和ST中的脂质过氧化和HC中的亚硝酸盐水平。另一方面,与Sol相关的ALA能够限制单独由Sol引起的影响,无论是与硝基氧化参数还是与行为测试有关。综上所述,我们的数据表明,ALA可以作为需要长期使用Sol的患者的辅助药物,以减轻这些中枢神经系统的不良影响。然而,需要进行临床研究来证实临床前研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protective effects of alpha-lipoic acid on memory deficit induced by repeated doses of solifenacin in mice: the role of nitro-oxidative stress.

Solifenacin (Sol) is one of the most used antimuscarinics for the treatment of bladder dysfunction and there are no conclusive studies on its effects on learning and memory after long-term use. Since substances with antioxidant action, such as alpha-lipoic acid (ALA), have shown protective action in memory deficit and Alzheimer's disease, we decided to study the effects of Sol alone or associated with ALA in behavioral tests of memory and its relation to nitro-oxidative stress in different brain areas. Mice received saline or Sol p.o. for 14 or 28 days. ALA groups received: (a) saline + ALA, (b) Sol for 14 days and Sol + ALA from the 15th to the 28th days and, (c) Sol + ALA for 28 days. Behavioral tests were performed and oxidative changes (lipid peroxidation) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were also determined. Sol produced memory alterations in the mice, reducing the step-down latency and the recognition index in the novel object recognition test. Sol also increased lipid peroxidation in PFC, HC and ST and nitrite levels in the HC. On the other hand, ALA associated with Sol was able to restrict the effects caused by Sol alone, both in relation to nitro-oxidative parameters and in relation to behavioral tests. Taken together, our data suggest that ALA can be administered as an adjunctive drug in patients requiring prolonged use of Sol to mitigate these adverse central nervous system effects. However, clinical studies need to be performed to corroborate preclinical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信