池化人肝微粒体酶解∆8-THC- o、∆9-THC- o、11-α-HHC- o、11-β-HHC- o生成∆8-THC、∆9-THC、11-α-HHC、11-β-HHC。

IF 2.8 4区 医学 Q2 TOXICOLOGY
Shuangli Zhao, Jorge Carlos Pineda García, Ren-Shi Li, Ruri Kikura-Hanajiri, Yosuke Demizu, Yoshitaka Tanaka, Yuji Ishii
{"title":"池化人肝微粒体酶解∆8-THC- o、∆9-THC- o、11-α-HHC- o、11-β-HHC- o生成∆8-THC、∆9-THC、11-α-HHC、11-β-HHC。","authors":"Shuangli Zhao, Jorge Carlos Pineda García, Ren-Shi Li, Ruri Kikura-Hanajiri, Yosuke Demizu, Yoshitaka Tanaka, Yuji Ishii","doi":"10.1007/s11419-025-00719-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In recent years, analogues of ∆<sup>9</sup>-tetrahydrocannabinol (∆<sup>9</sup>-THC) have been widely distributed in Japan via the internet. Hexahydrocannabinol (HHC), synthesized by reducing THC, was controlled as a designated substance under the Pharmaceutical and Medical Device Act in Japan in 2022. However, other semi-synthetic cannabinoids, such as acetyl derivatives of THC and HHC, appeared soon. Herein, we examined whether the enzymatic hydrolysis of acetylated forms of ∆<sup>9</sup>-THC, ∆<sup>8</sup>-THC 11-α-HHC, and 11-β-HHC by human liver microsomes (HLM) occurs.</p><p><strong>Methods: </strong>The hydrolysis reaction was accomplished with HLM. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine products. Recombinant enzymes carboxylesterase 1C (CES1c), carboxylesterase 2 (CES2), and carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) were used to clarify the principal hydrolysis enzymes for acetylated cannabinoids.</p><p><strong>Results: </strong>The acetylated form underwent hydrolysis with HLM time-dependently, with almost no acetylated product remaining after 60 min. Furthermore, results from LC-MS showed that only the deacetylated form was present after hydrolysis. Although hydrolysis did not occur when HLM was pre-incubated with the carboxylesterase inhibitor BNPP, it was observed when CES1c or CES2 was used for in vitro experiments.</p><p><strong>Conclusion: </strong>This is the first time that it is elucidated that ∆<sup>9</sup>-THC-O, ∆<sup>8</sup>-THC-O, 11-α-HHC-O, and 11-β-HHC-O are enzymatically hydrolyzed with HLM to produce ∆<sup>9</sup>-THC, ∆<sup>8</sup>-THC, 11-α-HHC, and 11-β-HHC, respectively. Our results also support that CES1c and CES2 were the main enzymes involved in the hydrolysis of the acetylated cannabinoids. This study provides scientific support for the metabolism of newly regulated acetylated cannabinoids to cause the parent compound in vivo.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic hydrolysis of ∆<sup>8</sup>-THC-O, ∆<sup>9</sup>-THC-O, 11-α-HHC-O, and 11-β-HHC-O by pooled human liver microsomes to generate ∆<sup>8</sup>-THC, ∆<sup>9</sup>-THC, 11-α-HHC, and 11-β-HHC.\",\"authors\":\"Shuangli Zhao, Jorge Carlos Pineda García, Ren-Shi Li, Ruri Kikura-Hanajiri, Yosuke Demizu, Yoshitaka Tanaka, Yuji Ishii\",\"doi\":\"10.1007/s11419-025-00719-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In recent years, analogues of ∆<sup>9</sup>-tetrahydrocannabinol (∆<sup>9</sup>-THC) have been widely distributed in Japan via the internet. Hexahydrocannabinol (HHC), synthesized by reducing THC, was controlled as a designated substance under the Pharmaceutical and Medical Device Act in Japan in 2022. However, other semi-synthetic cannabinoids, such as acetyl derivatives of THC and HHC, appeared soon. Herein, we examined whether the enzymatic hydrolysis of acetylated forms of ∆<sup>9</sup>-THC, ∆<sup>8</sup>-THC 11-α-HHC, and 11-β-HHC by human liver microsomes (HLM) occurs.</p><p><strong>Methods: </strong>The hydrolysis reaction was accomplished with HLM. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine products. Recombinant enzymes carboxylesterase 1C (CES1c), carboxylesterase 2 (CES2), and carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) were used to clarify the principal hydrolysis enzymes for acetylated cannabinoids.</p><p><strong>Results: </strong>The acetylated form underwent hydrolysis with HLM time-dependently, with almost no acetylated product remaining after 60 min. Furthermore, results from LC-MS showed that only the deacetylated form was present after hydrolysis. Although hydrolysis did not occur when HLM was pre-incubated with the carboxylesterase inhibitor BNPP, it was observed when CES1c or CES2 was used for in vitro experiments.</p><p><strong>Conclusion: </strong>This is the first time that it is elucidated that ∆<sup>9</sup>-THC-O, ∆<sup>8</sup>-THC-O, 11-α-HHC-O, and 11-β-HHC-O are enzymatically hydrolyzed with HLM to produce ∆<sup>9</sup>-THC, ∆<sup>8</sup>-THC, 11-α-HHC, and 11-β-HHC, respectively. Our results also support that CES1c and CES2 were the main enzymes involved in the hydrolysis of the acetylated cannabinoids. This study provides scientific support for the metabolism of newly regulated acetylated cannabinoids to cause the parent compound in vivo.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-025-00719-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-025-00719-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:近年来,∆9-四氢大麻酚(∆9-THC)的类似物通过互联网在日本广泛传播。通过还原四氢大麻酚(THC)合成的六氢大麻酚(HHC)于2022年在日本的《药品和医疗器械法》中被指定为指定物质。然而,其他半合成大麻素,如四氢大麻酚和六氢大麻酚的乙酰衍生物,很快出现。在此,我们检测了乙酰化形式的∆9-THC、∆8-THC 11-α-HHC和11-β-HHC是否会被人肝微粒体(HLM)酶解。方法:采用高分子量聚合物进行水解反应。采用液相色谱-串联质谱法(LC-MS/MS)测定产物。用重组酶羧化酯酶1C (CES1c)、羧化酯酶2 (CES2)和羧化酯酶抑制剂二-(4-硝基苯基)磷酸(BNPP)澄清了乙酰化大麻素的主要水解酶。结果:乙酰化形式的水解与HLM时间相关,60分钟后几乎没有乙酰化产物残留。LC-MS结果显示,水解后只存在去乙酰化形式。虽然用羧酸酯酶抑制剂BNPP预孵育HLM时没有发生水解,但用CES1c或CES2进行体外实验时可以观察到。结论:本文首次证实了HLM与∆9-THC- o、∆8-THC- o、11-α-HHC- o、11-β-HHC- o分别酶解生成∆9-THC、∆8-THC、11-α-HHC、11-β-HHC。我们的结果也支持CES1c和CES2是参与乙酰化大麻素水解的主要酶。本研究为新调控的乙酰化大麻素在体内引起母体化合物的代谢提供了科学支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzymatic hydrolysis of ∆8-THC-O, ∆9-THC-O, 11-α-HHC-O, and 11-β-HHC-O by pooled human liver microsomes to generate ∆8-THC, ∆9-THC, 11-α-HHC, and 11-β-HHC.

Purpose: In recent years, analogues of ∆9-tetrahydrocannabinol (∆9-THC) have been widely distributed in Japan via the internet. Hexahydrocannabinol (HHC), synthesized by reducing THC, was controlled as a designated substance under the Pharmaceutical and Medical Device Act in Japan in 2022. However, other semi-synthetic cannabinoids, such as acetyl derivatives of THC and HHC, appeared soon. Herein, we examined whether the enzymatic hydrolysis of acetylated forms of ∆9-THC, ∆8-THC 11-α-HHC, and 11-β-HHC by human liver microsomes (HLM) occurs.

Methods: The hydrolysis reaction was accomplished with HLM. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine products. Recombinant enzymes carboxylesterase 1C (CES1c), carboxylesterase 2 (CES2), and carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) were used to clarify the principal hydrolysis enzymes for acetylated cannabinoids.

Results: The acetylated form underwent hydrolysis with HLM time-dependently, with almost no acetylated product remaining after 60 min. Furthermore, results from LC-MS showed that only the deacetylated form was present after hydrolysis. Although hydrolysis did not occur when HLM was pre-incubated with the carboxylesterase inhibitor BNPP, it was observed when CES1c or CES2 was used for in vitro experiments.

Conclusion: This is the first time that it is elucidated that ∆9-THC-O, ∆8-THC-O, 11-α-HHC-O, and 11-β-HHC-O are enzymatically hydrolyzed with HLM to produce ∆9-THC, ∆8-THC, 11-α-HHC, and 11-β-HHC, respectively. Our results also support that CES1c and CES2 were the main enzymes involved in the hydrolysis of the acetylated cannabinoids. This study provides scientific support for the metabolism of newly regulated acetylated cannabinoids to cause the parent compound in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Toxicology
Forensic Toxicology TOXICOLOGY-
CiteScore
5.80
自引率
9.10%
发文量
40
审稿时长
3 months
期刊介绍: The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published. Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信