基于表面触觉成像的合成数据增强可解释视觉转换器用于结直肠癌诊断

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Siddhartha Kapuria , Naruhiko Ikoma , Sandeep Chinchali , Farshid Alambeigi
{"title":"基于表面触觉成像的合成数据增强可解释视觉转换器用于结直肠癌诊断","authors":"Siddhartha Kapuria ,&nbsp;Naruhiko Ikoma ,&nbsp;Sandeep Chinchali ,&nbsp;Farshid Alambeigi","doi":"10.1016/j.engappai.2025.110633","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a synthetic data augmented explainable Vision Transformer (ViT) framework designed for the informed and intuitive early diagnosis of colorectal cancer (CRC) polyps. The framework uses textural images — generated by our recently developed vision-based tactile sensor (called HySenSe) and augmented by synthetically generated images from a diffusion model pipeline, to output class-based probabilities of potential CRC polyp types. Additionally, it provides local relevancy-based heatmaps to assist clinicians by highlighting key areas of interest in the tactile images representing CRC polyp textures. We benchmark each aspect of this framework through: (i) Inception Scores for the synthetic images generated by the diffusion pipeline, (ii) Performance evaluation and sensitivity analyses on the effects of synthetic data addition on model generalizability compared with other state-of-the-art architectures, (iii) Dimensionality reduction techniques to confirm the suitability of synthetically generated images, and (iv) Comparison of two independent approaches visualizing explainability.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"151 ","pages":"Article 110633"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic data-augmented explainable Vision Transformer for colorectal cancer diagnosis via surface tactile imaging\",\"authors\":\"Siddhartha Kapuria ,&nbsp;Naruhiko Ikoma ,&nbsp;Sandeep Chinchali ,&nbsp;Farshid Alambeigi\",\"doi\":\"10.1016/j.engappai.2025.110633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we present a synthetic data augmented explainable Vision Transformer (ViT) framework designed for the informed and intuitive early diagnosis of colorectal cancer (CRC) polyps. The framework uses textural images — generated by our recently developed vision-based tactile sensor (called HySenSe) and augmented by synthetically generated images from a diffusion model pipeline, to output class-based probabilities of potential CRC polyp types. Additionally, it provides local relevancy-based heatmaps to assist clinicians by highlighting key areas of interest in the tactile images representing CRC polyp textures. We benchmark each aspect of this framework through: (i) Inception Scores for the synthetic images generated by the diffusion pipeline, (ii) Performance evaluation and sensitivity analyses on the effects of synthetic data addition on model generalizability compared with other state-of-the-art architectures, (iii) Dimensionality reduction techniques to confirm the suitability of synthetically generated images, and (iv) Comparison of two independent approaches visualizing explainability.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"151 \",\"pages\":\"Article 110633\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625006335\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625006335","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一个合成数据增强可解释视觉转换器(ViT)框架,旨在对结直肠癌(CRC)息肉进行知情和直观的早期诊断。该框架使用由我们最近开发的基于视觉的触觉传感器(称为 HySenSe)生成的纹理图像,并通过扩散模型管道合成的图像进行增强,从而输出基于类别的潜在 CRC 息肉类型的概率。此外,它还提供基于局部相关性的热图,通过突出显示代表 CRC 息肉纹理的触觉图像中的关键兴趣区域来帮助临床医生。我们通过以下方法对该框架的各个方面进行基准测试:(i) 对扩散管道生成的合成图像进行初始评分;(ii) 与其他最先进的架构相比,对增加合成数据对模型泛化能力的影响进行性能评估和敏感性分析;(iii) 采用降维技术确认合成图像的适用性;以及 (iv) 比较两种可视化可解释性的独立方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic data-augmented explainable Vision Transformer for colorectal cancer diagnosis via surface tactile imaging
In this work, we present a synthetic data augmented explainable Vision Transformer (ViT) framework designed for the informed and intuitive early diagnosis of colorectal cancer (CRC) polyps. The framework uses textural images — generated by our recently developed vision-based tactile sensor (called HySenSe) and augmented by synthetically generated images from a diffusion model pipeline, to output class-based probabilities of potential CRC polyp types. Additionally, it provides local relevancy-based heatmaps to assist clinicians by highlighting key areas of interest in the tactile images representing CRC polyp textures. We benchmark each aspect of this framework through: (i) Inception Scores for the synthetic images generated by the diffusion pipeline, (ii) Performance evaluation and sensitivity analyses on the effects of synthetic data addition on model generalizability compared with other state-of-the-art architectures, (iii) Dimensionality reduction techniques to confirm the suitability of synthetically generated images, and (iv) Comparison of two independent approaches visualizing explainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信