自伴随算子的定义,由平面上具有白噪声势的Schrödinger算子推导而来

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Naomasa Ueki
{"title":"自伴随算子的定义,由平面上具有白噪声势的Schrödinger算子推导而来","authors":"Naomasa Ueki","doi":"10.1016/j.spa.2025.104642","DOIUrl":null,"url":null,"abstract":"<div><div>For the white noise <span><math><mi>ξ</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, an operator corresponding to a limit of <span><math><mrow><mo>−</mo><mi>Δ</mi><mo>+</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></mrow></math></span> as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> is realized as a self-adjoint operator, where, for each <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> is a constant, <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> is a smooth approximation of <span><math><mi>ξ</mi></math></span> defined by <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Δ</mi><mo>)</mo></mrow><mi>ξ</mi></mrow></math></span>, and <span><math><mi>Δ</mi></math></span> is the Laplacian. This result is a variant of results obtained by Allez and Chouk, Mouzard, and Ugurcan. The proof in this paper is based on the heat semigroup approach of the paracontrolled calculus, referring the proof by Mouzard. For the obtained operator, the spectral set is shown to be <span><math><mi>R</mi></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104642"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A definition of self-adjoint operators derived from the Schrödinger operator with the white noise potential on the plane\",\"authors\":\"Naomasa Ueki\",\"doi\":\"10.1016/j.spa.2025.104642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the white noise <span><math><mi>ξ</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, an operator corresponding to a limit of <span><math><mrow><mo>−</mo><mi>Δ</mi><mo>+</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></mrow></math></span> as <span><math><mrow><mi>ɛ</mi><mo>→</mo><mn>0</mn></mrow></math></span> is realized as a self-adjoint operator, where, for each <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> is a constant, <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> is a smooth approximation of <span><math><mi>ξ</mi></math></span> defined by <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Δ</mi><mo>)</mo></mrow><mi>ξ</mi></mrow></math></span>, and <span><math><mi>Δ</mi></math></span> is the Laplacian. This result is a variant of results obtained by Allez and Chouk, Mouzard, and Ugurcan. The proof in this paper is based on the heat semigroup approach of the paracontrolled calculus, referring the proof by Mouzard. For the obtained operator, the spectral set is shown to be <span><math><mi>R</mi></math></span>.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"186 \",\"pages\":\"Article 104642\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000833\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000833","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于R2上的白噪声ξ,当ε→0时,对应于−Δ+ξ ε +c ε极限的算子被实现为自伴随算子,其中,对于每个ε >;0, c ε是一个常数,ξ ε是由exp(ε 2Δ)ξ定义的ξ的光滑逼近,Δ是拉普拉斯算子。这个结果是Allez、Chouk、Mouzard和Ugurcan得到的结果的变体。本文的证明是基于副控制微积分的热半群方法,参考Mouzard的证明。对于得到的算子,谱集表示为R。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A definition of self-adjoint operators derived from the Schrödinger operator with the white noise potential on the plane
For the white noise ξ on R2, an operator corresponding to a limit of Δ+ξɛ+cɛ as ɛ0 is realized as a self-adjoint operator, where, for each ɛ>0, cɛ is a constant, ξɛ is a smooth approximation of ξ defined by exp(ɛ2Δ)ξ, and Δ is the Laplacian. This result is a variant of results obtained by Allez and Chouk, Mouzard, and Ugurcan. The proof in this paper is based on the heat semigroup approach of the paracontrolled calculus, referring the proof by Mouzard. For the obtained operator, the spectral set is shown to be R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信