Minhyuck Park , Jimin Park , Son Ha , Yeong Hoon Heo , Jisoo Kim , Jong Chan Hyun , Jin Hwan Kwak , Jeonghun Lee , Se Youn Cho , Hyoung-Joon Jin , Young Soo Yun
{"title":"Ultrathin lithium chalcogenide-based nanohybrid SEI layer for suppressing lithium dendrite growth and polysulfide shuttle in Li-S batteries","authors":"Minhyuck Park , Jimin Park , Son Ha , Yeong Hoon Heo , Jisoo Kim , Jong Chan Hyun , Jin Hwan Kwak , Jeonghun Lee , Se Youn Cho , Hyoung-Joon Jin , Young Soo Yun","doi":"10.1016/j.jcis.2025.137419","DOIUrl":null,"url":null,"abstract":"<div><div>To advance high-energy–density Li–S batteries, it is crucial to develop strategies that enhance the energy efficiency, power capability, and cycle stability of both lithium metal anodes (LMAs) and sulfur cathodes (SCs). This study introduces an ultra-thin (∼60 nm) lithium telluride (<em>t</em>-Li<sub>2</sub>Te) layer on a conventional polypropylene (PP) separator, designed to improve the Coulombic efficiency (CE) and cycling stability of LMAs and SCs. The <em>t</em>-Li<sub>2</sub>Te layer features a nanoporous structure of aggregated Li<sub>2</sub>Te nanoparticles, with nanopores filled by solid-electrolyte interface (SEI) materials during initial lithium deposition. This <em>t</em>-Li<sub>2</sub>Te-SEI nanohybrid layer significantly enhanced CE for LMA, reaching maximum capacity within four cycles with only 25 % total capacity loss, contrasting with a 210 % capacity loss over ten cycles in the bare PP-based anode without <em>t</em>-Li<sub>2</sub>Te. In high cut-off capacity tests (4 mA h cm<sup>−2</sup>), the <em>t</em>-Li<sub>2</sub>Te-based system achieved stable cycling over 350 cycles, extending cycle life tenfold compared to the bare PP-based anode. For SC applications, the <em>t</em>-Li<sub>2</sub>Te-SEI nanohybrid layer attained an initial CE of 98.3 %, notably higher than that (93.1 %) of the reference system. After 100 cycles, the <em>t</em>-Li<sub>2</sub>Te-based SC system retained 85 % capacity, showing a 20 % improvement over systems without the nanohybrid layer.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137419"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008100","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
为了推动高能量密度锂-S 电池的发展,开发出能够提高锂金属阳极 (LMA) 和硫阴极 (SC) 的能量效率、功率能力和循环稳定性的策略至关重要。本研究在传统的聚丙烯(PP)隔膜上引入了超薄(60 纳米)碲化镉锂(t-Li2Te)层,旨在提高锂金属阳极(LMA)和硫阴极(SC)的库仑效率(CE)和循环稳定性。t-Li2Te 层具有聚集 Li2Te 纳米颗粒的纳米多孔结构,在初始锂沉积过程中由固体电解质界面(SEI)材料填充纳米孔。这种 t-Li2Te-SEI 纳米混合层显著提高了 LMA 的 CE 值,在四个周期内达到最大容量,总容量损失仅为 25%,而不含 t-Li2Te 的 PP 基裸负极在十个周期内容量损失高达 210%。在高截止容量测试(4 mA h cm-2)中,基于 t-Li2Te 的系统实现了 350 个周期以上的稳定循环,与基于 PP 的裸阳极相比,循环寿命延长了十倍。在 SC 应用中,t-Li2Te-SEI 纳米杂化层的初始 CE 值达到 98.3%,明显高于参考系统的 CE 值(93.1%)。经过 100 次循环后,基于 t-Li2Te 的 SC 系统的容量保持在 85%,比没有纳米杂化层的系统提高了 20%。
Ultrathin lithium chalcogenide-based nanohybrid SEI layer for suppressing lithium dendrite growth and polysulfide shuttle in Li-S batteries
To advance high-energy–density Li–S batteries, it is crucial to develop strategies that enhance the energy efficiency, power capability, and cycle stability of both lithium metal anodes (LMAs) and sulfur cathodes (SCs). This study introduces an ultra-thin (∼60 nm) lithium telluride (t-Li2Te) layer on a conventional polypropylene (PP) separator, designed to improve the Coulombic efficiency (CE) and cycling stability of LMAs and SCs. The t-Li2Te layer features a nanoporous structure of aggregated Li2Te nanoparticles, with nanopores filled by solid-electrolyte interface (SEI) materials during initial lithium deposition. This t-Li2Te-SEI nanohybrid layer significantly enhanced CE for LMA, reaching maximum capacity within four cycles with only 25 % total capacity loss, contrasting with a 210 % capacity loss over ten cycles in the bare PP-based anode without t-Li2Te. In high cut-off capacity tests (4 mA h cm−2), the t-Li2Te-based system achieved stable cycling over 350 cycles, extending cycle life tenfold compared to the bare PP-based anode. For SC applications, the t-Li2Te-SEI nanohybrid layer attained an initial CE of 98.3 %, notably higher than that (93.1 %) of the reference system. After 100 cycles, the t-Li2Te-based SC system retained 85 % capacity, showing a 20 % improvement over systems without the nanohybrid layer.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies