{"title":"融合子空间建模和自监督时空去噪的MR空间谱重构","authors":"Ruiyang Zhao;Zepeng Wang;Aaron Anderson;Graham Huesmann;Fan Lam","doi":"10.1109/TMI.2025.3555928","DOIUrl":null,"url":null,"abstract":"We present a new method that integrates subspace modeling and a pre-learned spatiotemporal denoiser for reconstruction from highly noisy magnetic resonance spectroscopic imaging (MRSI) data. The subspace model imposes an explicit low-dimensional representation of the high-dimensional spatiospectral functions of interest for noise reduction, while the denoiser serves as a complementary spatiotemporal prior to constrain the subspace reconstruction. A self-supervised learning strategy was proposed to train a denoiser that can distinguish the spatiotemporally correlated signals from uncorrelated noise. An iterative reconstruction formalism was developed based on the Plug-and-Play (PnP)-ADMM framework to synergize the subspace constraint, plug-in denoiser and spatiospectral encoding model. We evaluated the proposed method using numerical simulations and in vivo data, demonstrating improved performance over state-of-the-art subspace-based methods. We also provided theoretical analysis on the utility of combining subspace projection and iterative denoising in terms of both algorithm convergence and performance. Our work demonstrated the potential of integrating self-supervised denoising priors and low-dimensional representations for high-dimensional imaging problems.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"3002-3011"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945499","citationCount":"0","resultStr":"{\"title\":\"MR Spatiospectral Reconstruction Integrating Subspace Modeling and Self-Supervised Spatiotemporal Denoising\",\"authors\":\"Ruiyang Zhao;Zepeng Wang;Aaron Anderson;Graham Huesmann;Fan Lam\",\"doi\":\"10.1109/TMI.2025.3555928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method that integrates subspace modeling and a pre-learned spatiotemporal denoiser for reconstruction from highly noisy magnetic resonance spectroscopic imaging (MRSI) data. The subspace model imposes an explicit low-dimensional representation of the high-dimensional spatiospectral functions of interest for noise reduction, while the denoiser serves as a complementary spatiotemporal prior to constrain the subspace reconstruction. A self-supervised learning strategy was proposed to train a denoiser that can distinguish the spatiotemporally correlated signals from uncorrelated noise. An iterative reconstruction formalism was developed based on the Plug-and-Play (PnP)-ADMM framework to synergize the subspace constraint, plug-in denoiser and spatiospectral encoding model. We evaluated the proposed method using numerical simulations and in vivo data, demonstrating improved performance over state-of-the-art subspace-based methods. We also provided theoretical analysis on the utility of combining subspace projection and iterative denoising in terms of both algorithm convergence and performance. Our work demonstrated the potential of integrating self-supervised denoising priors and low-dimensional representations for high-dimensional imaging problems.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 7\",\"pages\":\"3002-3011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945499\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945499/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945499/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MR Spatiospectral Reconstruction Integrating Subspace Modeling and Self-Supervised Spatiotemporal Denoising
We present a new method that integrates subspace modeling and a pre-learned spatiotemporal denoiser for reconstruction from highly noisy magnetic resonance spectroscopic imaging (MRSI) data. The subspace model imposes an explicit low-dimensional representation of the high-dimensional spatiospectral functions of interest for noise reduction, while the denoiser serves as a complementary spatiotemporal prior to constrain the subspace reconstruction. A self-supervised learning strategy was proposed to train a denoiser that can distinguish the spatiotemporally correlated signals from uncorrelated noise. An iterative reconstruction formalism was developed based on the Plug-and-Play (PnP)-ADMM framework to synergize the subspace constraint, plug-in denoiser and spatiospectral encoding model. We evaluated the proposed method using numerical simulations and in vivo data, demonstrating improved performance over state-of-the-art subspace-based methods. We also provided theoretical analysis on the utility of combining subspace projection and iterative denoising in terms of both algorithm convergence and performance. Our work demonstrated the potential of integrating self-supervised denoising priors and low-dimensional representations for high-dimensional imaging problems.