{"title":"NumScout:使用llm -剪枝符号执行揭示智能合约中的数字缺陷","authors":"Jiachi Chen;Zhenzhe Shao;Shuo Yang;Yiming Shen;Yanlin Wang;Ting Chen;Zhenyu Shan;Zibin Zheng","doi":"10.1109/TSE.2025.3555622","DOIUrl":null,"url":null,"abstract":"In recent years, the Ethereum platform has witnessed a proliferation of smart contracts, accompanied by exponential growth in total value locked (TVL). High-TVL smart contracts often require complex numerical computations, particularly in mathematical financial models used by many decentralized applications (DApps). Improper calculations can introduce numerical defects, posing potential security risks. Existing research primarily focuses on traditional numerical defects like integer overflow, and there is currently a lack of systematic research and effective detection methods targeting new types of numerical defects. In this paper, we identify five new types of numerical defects through the analysis of 1,199 audit reports by utilizing the open card method. Each defect is defined and illustrated with a code example to highlight its features and potential consequences. We also propose NumScout, a symbolic execution-based tool designed to detect these five defects. Specifically, the tool combines information from source code and bytecode, analyzing key operations such as comparisons and transfers, to effectively locate defects and report them based on predefined detection patterns. Furthermore, NumScout uses a large language model (LLM) to prune functions which are unrelated to numerical operations. This step allows symbolic execution to quickly enter the target function and improve runtime speed by 28.4%. We run NumScout on 6,617 real-world contracts and evaluated its performance based on manually labeled results. We find that 1,774 contracts contained at least one of the five defects, and the tool achieved an overall precision of 89.7%.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 5","pages":"1538-1553"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NumScout: Unveiling Numerical Defects in Smart Contracts Using LLM-Pruning Symbolic Execution\",\"authors\":\"Jiachi Chen;Zhenzhe Shao;Shuo Yang;Yiming Shen;Yanlin Wang;Ting Chen;Zhenyu Shan;Zibin Zheng\",\"doi\":\"10.1109/TSE.2025.3555622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the Ethereum platform has witnessed a proliferation of smart contracts, accompanied by exponential growth in total value locked (TVL). High-TVL smart contracts often require complex numerical computations, particularly in mathematical financial models used by many decentralized applications (DApps). Improper calculations can introduce numerical defects, posing potential security risks. Existing research primarily focuses on traditional numerical defects like integer overflow, and there is currently a lack of systematic research and effective detection methods targeting new types of numerical defects. In this paper, we identify five new types of numerical defects through the analysis of 1,199 audit reports by utilizing the open card method. Each defect is defined and illustrated with a code example to highlight its features and potential consequences. We also propose NumScout, a symbolic execution-based tool designed to detect these five defects. Specifically, the tool combines information from source code and bytecode, analyzing key operations such as comparisons and transfers, to effectively locate defects and report them based on predefined detection patterns. Furthermore, NumScout uses a large language model (LLM) to prune functions which are unrelated to numerical operations. This step allows symbolic execution to quickly enter the target function and improve runtime speed by 28.4%. We run NumScout on 6,617 real-world contracts and evaluated its performance based on manually labeled results. We find that 1,774 contracts contained at least one of the five defects, and the tool achieved an overall precision of 89.7%.\",\"PeriodicalId\":13324,\"journal\":{\"name\":\"IEEE Transactions on Software Engineering\",\"volume\":\"51 5\",\"pages\":\"1538-1553\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944552/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944552/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
NumScout: Unveiling Numerical Defects in Smart Contracts Using LLM-Pruning Symbolic Execution
In recent years, the Ethereum platform has witnessed a proliferation of smart contracts, accompanied by exponential growth in total value locked (TVL). High-TVL smart contracts often require complex numerical computations, particularly in mathematical financial models used by many decentralized applications (DApps). Improper calculations can introduce numerical defects, posing potential security risks. Existing research primarily focuses on traditional numerical defects like integer overflow, and there is currently a lack of systematic research and effective detection methods targeting new types of numerical defects. In this paper, we identify five new types of numerical defects through the analysis of 1,199 audit reports by utilizing the open card method. Each defect is defined and illustrated with a code example to highlight its features and potential consequences. We also propose NumScout, a symbolic execution-based tool designed to detect these five defects. Specifically, the tool combines information from source code and bytecode, analyzing key operations such as comparisons and transfers, to effectively locate defects and report them based on predefined detection patterns. Furthermore, NumScout uses a large language model (LLM) to prune functions which are unrelated to numerical operations. This step allows symbolic execution to quickly enter the target function and improve runtime speed by 28.4%. We run NumScout on 6,617 real-world contracts and evaluated its performance based on manually labeled results. We find that 1,774 contracts contained at least one of the five defects, and the tool achieved an overall precision of 89.7%.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.