星图中时空分数抛物Sturm-Liouville方程的无后悔控制和低后悔控制

IF 2.5 2区 数学 Q1 MATHEMATICS
Gisèle Mophou, Maryse Moutamal, Mahamadi Warma
{"title":"星图中时空分数抛物Sturm-Liouville方程的无后悔控制和低后悔控制","authors":"Gisèle Mophou, Maryse Moutamal, Mahamadi Warma","doi":"10.1007/s13540-025-00396-3","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with a space-time fractional parabolic initial-boundary value problem of Sturm-Liouville type in a general star graph with mixed Dirichlet and Neumann boundary controls. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. Using the notion of no-regret control introduced by Lions, we prove the existence, uniqueness, and characterize the low regret control of a quadratic boundary optimal control problem, then we prove that this low regret control converges to the no-regret control and we provide the associated optimality systems and conditions that characterize that no-regret control.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-regret and low-regret controls of space-time fractional parabolic Sturm-Liouville equations in a star graph\",\"authors\":\"Gisèle Mophou, Maryse Moutamal, Mahamadi Warma\",\"doi\":\"10.1007/s13540-025-00396-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with a space-time fractional parabolic initial-boundary value problem of Sturm-Liouville type in a general star graph with mixed Dirichlet and Neumann boundary controls. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. Using the notion of no-regret control introduced by Lions, we prove the existence, uniqueness, and characterize the low regret control of a quadratic boundary optimal control problem, then we prove that this low regret control converges to the no-regret control and we provide the associated optimality systems and conditions that characterize that no-regret control.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00396-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00396-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有Dirichlet和Neumann混合边界控制的一般星图的时空分数抛物型Sturm-Liouville型初边值问题。首先给出了弱解和甚弱解的存在性、唯一性和正则性的几个结果。利用Lions引入的无后悔控制的概念,证明了二次型边界最优控制问题的低后悔控制的存在性、唯一性和特征,证明了该低后悔控制收敛于无后悔控制,并给出了表征该无后悔控制的相关最优性系统和条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-regret and low-regret controls of space-time fractional parabolic Sturm-Liouville equations in a star graph

We are concerned with a space-time fractional parabolic initial-boundary value problem of Sturm-Liouville type in a general star graph with mixed Dirichlet and Neumann boundary controls. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. Using the notion of no-regret control introduced by Lions, we prove the existence, uniqueness, and characterize the low regret control of a quadratic boundary optimal control problem, then we prove that this low regret control converges to the no-regret control and we provide the associated optimality systems and conditions that characterize that no-regret control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信