具有宇宙学和红移依赖性的宇宙结构形成的场级模拟

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Drew Jamieson, Yin Li, Francisco Villaescusa-Navarro, Shirley Ho and David N. Spergel
{"title":"具有宇宙学和红移依赖性的宇宙结构形成的场级模拟","authors":"Drew Jamieson, Yin Li, Francisco Villaescusa-Navarro, Shirley Ho and David N. Spergel","doi":"10.1088/1475-7516/2025/03/072","DOIUrl":null,"url":null,"abstract":"We present a field-level emulator for large-scale structure, capturing the cosmology dependence and the time evolution of cosmic structure formation. The emulator maps linear displacement fields to their corresponding nonlinear displacements from N-body simulations at specific redshifts. Designed as a neural network, the emulator incorporates style parameters that encode dependencies on Ωm and the linear growth factor D(z) at redshift z. We train our model on the six-dimensional N-body phase space, predicting particle velocities as the time derivative of the model's displacement outputs. This innovation results in significant improvements in training efficiency and model accuracy. Tested on diverse cosmologies and redshifts not seen during training, the emulator achieves percent-level accuracy on scales of k ∼ 1 Mpc-1h at z = 0, with improved performance at higher redshifts. We compare predicted structure formation histories with N-body simulations via merger trees, finding consistent merger event sequences and statistical properties.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"49 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-level emulation of cosmic structure formation with cosmology and redshift dependence\",\"authors\":\"Drew Jamieson, Yin Li, Francisco Villaescusa-Navarro, Shirley Ho and David N. Spergel\",\"doi\":\"10.1088/1475-7516/2025/03/072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a field-level emulator for large-scale structure, capturing the cosmology dependence and the time evolution of cosmic structure formation. The emulator maps linear displacement fields to their corresponding nonlinear displacements from N-body simulations at specific redshifts. Designed as a neural network, the emulator incorporates style parameters that encode dependencies on Ωm and the linear growth factor D(z) at redshift z. We train our model on the six-dimensional N-body phase space, predicting particle velocities as the time derivative of the model's displacement outputs. This innovation results in significant improvements in training efficiency and model accuracy. Tested on diverse cosmologies and redshifts not seen during training, the emulator achieves percent-level accuracy on scales of k ∼ 1 Mpc-1h at z = 0, with improved performance at higher redshifts. We compare predicted structure formation histories with N-body simulations via merger trees, finding consistent merger event sequences and statistical properties.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/03/072\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/072","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个大尺度结构场级模拟器,捕捉宇宙结构形成的宇宙学依赖和时间演化。仿真器在特定红移处将线性位移场映射到n体模拟中相应的非线性位移。仿真器设计为神经网络,结合了编码依赖于Ωm和红移z的线性生长因子D(z)的样式参数。我们在六维n体相空间上训练我们的模型,预测粒子速度作为模型位移输出的时间导数。这一创新显著提高了训练效率和模型准确性。在不同的宇宙学和训练期间未见的红移上进行了测试,仿真器在z = 0的k ~ 1 Mpc-1h尺度上达到了百分比级别的精度,在更高的红移下性能得到了改善。我们通过合并树将预测的结构形成历史与n体模拟进行比较,发现了一致的合并事件序列和统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field-level emulation of cosmic structure formation with cosmology and redshift dependence
We present a field-level emulator for large-scale structure, capturing the cosmology dependence and the time evolution of cosmic structure formation. The emulator maps linear displacement fields to their corresponding nonlinear displacements from N-body simulations at specific redshifts. Designed as a neural network, the emulator incorporates style parameters that encode dependencies on Ωm and the linear growth factor D(z) at redshift z. We train our model on the six-dimensional N-body phase space, predicting particle velocities as the time derivative of the model's displacement outputs. This innovation results in significant improvements in training efficiency and model accuracy. Tested on diverse cosmologies and redshifts not seen during training, the emulator achieves percent-level accuracy on scales of k ∼ 1 Mpc-1h at z = 0, with improved performance at higher redshifts. We compare predicted structure formation histories with N-body simulations via merger trees, finding consistent merger event sequences and statistical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信