生成式人工智能和大型语言模型在减轻药物相关伤害方面的范围综述

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Jasmine Chiat Ling Ong, Michael Hao Chen, Ning Ng, Kabilan Elangovan, Nichole Yue Ting Tan, Liyuan Jin, Qihuang Xie, Daniel Shu Wei Ting, Rosa Rodriguez-Monguio, David W. Bates, Nan Liu
{"title":"生成式人工智能和大型语言模型在减轻药物相关伤害方面的范围综述","authors":"Jasmine Chiat Ling Ong, Michael Hao Chen, Ning Ng, Kabilan Elangovan, Nichole Yue Ting Tan, Liyuan Jin, Qihuang Xie, Daniel Shu Wei Ting, Rosa Rodriguez-Monguio, David W. Bates, Nan Liu","doi":"10.1038/s41746-025-01565-7","DOIUrl":null,"url":null,"abstract":"<p>Medication-related harm has a significant impact on global healthcare costs and patient outcomes. Generative artificial intelligence (GenAI) and large language models (LLM) have emerged as a promising tool in mitigating risks of medication-related harm. This review evaluates the scope and effectiveness of GenAI and LLM in reducing medication-related harm. We screened 4 databases for literature published from 1st January 2012 to 15th October 2024. A total of 3988 articles were identified, and 30 met the criteria for inclusion into the final review. Generative AI and LLMs were applied in three key applications: drug-drug interaction identification and prediction, clinical decision support, and pharmacovigilance. While the performance and utility of these models varied, they generally showed promise in early identification, classification of adverse drug events, and supporting decision-making for medication management. However, no studies tested these models prospectively, suggesting a need for further investigation into integration and real-world application.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"4 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scoping review on generative AI and large language models in mitigating medication related harm\",\"authors\":\"Jasmine Chiat Ling Ong, Michael Hao Chen, Ning Ng, Kabilan Elangovan, Nichole Yue Ting Tan, Liyuan Jin, Qihuang Xie, Daniel Shu Wei Ting, Rosa Rodriguez-Monguio, David W. Bates, Nan Liu\",\"doi\":\"10.1038/s41746-025-01565-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medication-related harm has a significant impact on global healthcare costs and patient outcomes. Generative artificial intelligence (GenAI) and large language models (LLM) have emerged as a promising tool in mitigating risks of medication-related harm. This review evaluates the scope and effectiveness of GenAI and LLM in reducing medication-related harm. We screened 4 databases for literature published from 1st January 2012 to 15th October 2024. A total of 3988 articles were identified, and 30 met the criteria for inclusion into the final review. Generative AI and LLMs were applied in three key applications: drug-drug interaction identification and prediction, clinical decision support, and pharmacovigilance. While the performance and utility of these models varied, they generally showed promise in early identification, classification of adverse drug events, and supporting decision-making for medication management. However, no studies tested these models prospectively, suggesting a need for further investigation into integration and real-world application.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01565-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01565-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

与药物相关的伤害对全球医疗保健成本和患者结果产生重大影响。生成式人工智能(GenAI)和大型语言模型(LLM)已成为减轻药物相关伤害风险的有前途的工具。这篇综述评价了GenAI和LLM在减少药物相关危害方面的范围和有效性。我们从4个数据库中筛选了2012年1月1日至2024年10月15日发表的文献。总共确定了3988篇文章,其中30篇符合纳入最终审查的标准。生成式AI和llm应用于三个关键应用:药物-药物相互作用识别和预测、临床决策支持和药物警戒。虽然这些模型的性能和效用各不相同,但它们通常在早期识别、药物不良事件分类和药物管理决策支持方面显示出希望。然而,没有研究对这些模型进行前瞻性测试,这表明需要进一步研究其集成和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A scoping review on generative AI and large language models in mitigating medication related harm

A scoping review on generative AI and large language models in mitigating medication related harm

Medication-related harm has a significant impact on global healthcare costs and patient outcomes. Generative artificial intelligence (GenAI) and large language models (LLM) have emerged as a promising tool in mitigating risks of medication-related harm. This review evaluates the scope and effectiveness of GenAI and LLM in reducing medication-related harm. We screened 4 databases for literature published from 1st January 2012 to 15th October 2024. A total of 3988 articles were identified, and 30 met the criteria for inclusion into the final review. Generative AI and LLMs were applied in three key applications: drug-drug interaction identification and prediction, clinical decision support, and pharmacovigilance. While the performance and utility of these models varied, they generally showed promise in early identification, classification of adverse drug events, and supporting decision-making for medication management. However, no studies tested these models prospectively, suggesting a need for further investigation into integration and real-world application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信