{"title":"地理空间应用中人类对不确定性可视化的表现和感知:范围审查。","authors":"Ryan Tennant, Tania Randall","doi":"10.1109/TVCG.2025.3554969","DOIUrl":null,"url":null,"abstract":"<p><p>Geospatial data are often uncertain due to measurement, spatial, or temporal limitations. A knowledge gap exists about how geospatial uncertainty visualization techniques influence human factors measures. This comprehensive review synthesized the current literature on visual representations of uncertainty in geospatial data applications, identifying the breadth of techniques and the relationships between strategies and human performance and perception outcomes. Eligible articles described and evaluated at least one method for representing uncertainty in geographical data with participants, including land, ocean, weather, climate, and positioning data. Forty articles were included. Uncertainty was visualized using multivariate and univariate maps through colours, shapes, boundary regions, textures, symbols, grid noise, and text. There were varying effects, and no definitive superior method was identified. The predominant user focus was on novices. Trends were observed in supporting users understand uncertainty, user preferences, confidence, decision-making performance, and response times for different techniques and application contexts. The findings highlight the impacts of different categorizations within colour and shape techniques, heterogeneity in perception and performance evaluation, performance and perception mismatch, and differences and similarities between novices and experts. Contextual factors and user characteristics, including understanding the decision-maker's tasks, user type, and desired outcomes for decision-support appear to be important factors influencing the design of effective uncertainty visualizations. Future research on geospatial applications of uncertainty visualizations can expand on the observed trends with consistent and standardized measurement and reporting, further explore human performance and perception impacts with 3-dimensional and interactive uncertainty visualizations, and perform real-world evaluations within various contexts.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Performance and Perception of Uncertainty Visualizations in Geospatial Applications: A Scoping Review.\",\"authors\":\"Ryan Tennant, Tania Randall\",\"doi\":\"10.1109/TVCG.2025.3554969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Geospatial data are often uncertain due to measurement, spatial, or temporal limitations. A knowledge gap exists about how geospatial uncertainty visualization techniques influence human factors measures. This comprehensive review synthesized the current literature on visual representations of uncertainty in geospatial data applications, identifying the breadth of techniques and the relationships between strategies and human performance and perception outcomes. Eligible articles described and evaluated at least one method for representing uncertainty in geographical data with participants, including land, ocean, weather, climate, and positioning data. Forty articles were included. Uncertainty was visualized using multivariate and univariate maps through colours, shapes, boundary regions, textures, symbols, grid noise, and text. There were varying effects, and no definitive superior method was identified. The predominant user focus was on novices. Trends were observed in supporting users understand uncertainty, user preferences, confidence, decision-making performance, and response times for different techniques and application contexts. The findings highlight the impacts of different categorizations within colour and shape techniques, heterogeneity in perception and performance evaluation, performance and perception mismatch, and differences and similarities between novices and experts. Contextual factors and user characteristics, including understanding the decision-maker's tasks, user type, and desired outcomes for decision-support appear to be important factors influencing the design of effective uncertainty visualizations. Future research on geospatial applications of uncertainty visualizations can expand on the observed trends with consistent and standardized measurement and reporting, further explore human performance and perception impacts with 3-dimensional and interactive uncertainty visualizations, and perform real-world evaluations within various contexts.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3554969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3554969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Performance and Perception of Uncertainty Visualizations in Geospatial Applications: A Scoping Review.
Geospatial data are often uncertain due to measurement, spatial, or temporal limitations. A knowledge gap exists about how geospatial uncertainty visualization techniques influence human factors measures. This comprehensive review synthesized the current literature on visual representations of uncertainty in geospatial data applications, identifying the breadth of techniques and the relationships between strategies and human performance and perception outcomes. Eligible articles described and evaluated at least one method for representing uncertainty in geographical data with participants, including land, ocean, weather, climate, and positioning data. Forty articles were included. Uncertainty was visualized using multivariate and univariate maps through colours, shapes, boundary regions, textures, symbols, grid noise, and text. There were varying effects, and no definitive superior method was identified. The predominant user focus was on novices. Trends were observed in supporting users understand uncertainty, user preferences, confidence, decision-making performance, and response times for different techniques and application contexts. The findings highlight the impacts of different categorizations within colour and shape techniques, heterogeneity in perception and performance evaluation, performance and perception mismatch, and differences and similarities between novices and experts. Contextual factors and user characteristics, including understanding the decision-maker's tasks, user type, and desired outcomes for decision-support appear to be important factors influencing the design of effective uncertainty visualizations. Future research on geospatial applications of uncertainty visualizations can expand on the observed trends with consistent and standardized measurement and reporting, further explore human performance and perception impacts with 3-dimensional and interactive uncertainty visualizations, and perform real-world evaluations within various contexts.