视听感知的有眼渲染

Xuehuai Shi, Yucheng Li, Jiaheng Li, Jian Wu, Jieming Yin, Xiaobai Chen, Lili Wang
{"title":"视听感知的有眼渲染","authors":"Xuehuai Shi, Yucheng Li, Jiaheng Li, Jian Wu, Jieming Yin, Xiaobai Chen, Lili Wang","doi":"10.1109/TVCG.2025.3554737","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering methods for VR head-mounted displays (HMDs) struggle to meet users' demands for VR scene rendering with high frame rates (≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the HVS's eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on the HVS's visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that predicts the eccentricity-based visual perception in real time by combining the scene's audio-visual content, and then proposes a foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared with the state-of-the-art VR-HMD foveated rendering method.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio-visual aware Foveated Rendering.\",\"authors\":\"Xuehuai Shi, Yucheng Li, Jiaheng Li, Jian Wu, Jieming Yin, Xiaobai Chen, Lili Wang\",\"doi\":\"10.1109/TVCG.2025.3554737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering methods for VR head-mounted displays (HMDs) struggle to meet users' demands for VR scene rendering with high frame rates (≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the HVS's eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on the HVS's visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that predicts the eccentricity-based visual perception in real time by combining the scene's audio-visual content, and then proposes a foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared with the state-of-the-art VR-HMD foveated rendering method.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3554737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3554737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-visual aware Foveated Rendering.

With the increasing complexity of geometry and rendering effects in virtual reality (VR) scenes, existing foveated rendering methods for VR head-mounted displays (HMDs) struggle to meet users' demands for VR scene rendering with high frame rates (≥ 60 f ps for rendering binocular foveated images in VR scenes containing over 50M triangles). Current research validates that auditory content affects the perception of the human visual system (HVS). However, existing foveated rendering methods primarily model the HVS's eccentricity-dependent visual perception ability on the visual content in VR while ignoring the impact of auditory content on the HVS's visual perception. In this paper, we introduce an auditory-content-based perceived rendering quality analysis to quantify the impact of visual perception under different auditory conditions in foveated rendering. Based on the analysis results, we propose an audio-visual aware foveated rendering method (AvFR). AvFR first constructs an audio-visual feature-driven perception model that predicts the eccentricity-based visual perception in real time by combining the scene's audio-visual content, and then proposes a foveated rendering cost optimization algorithm to adaptively control the shading rate of different regions with the guidance of the perception model. In complex scenes with visual and auditory content containing over 1.17M triangles, AvFR renders high-quality binocular foveated images at an average frame rate of 116 f ps. The results of the main user study and performance evaluation validate that AvFR achieves significant performance improvement (up to 1.4× speedup) without lowering the perceived visual quality compared with the state-of-the-art VR-HMD foveated rendering method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信