表面结合的FXIII增强纤维蛋白纤维的沉积和直度。

IF 2.4 Q3 BIOPHYSICS
Myra Awan, Maya Papez, Ankita P Walvekar, Sang-Joon J Lee, Kinjal Dasbiswas, Anand K Ramasubramanian
{"title":"表面结合的FXIII增强纤维蛋白纤维的沉积和直度。","authors":"Myra Awan, Maya Papez, Ankita P Walvekar, Sang-Joon J Lee, Kinjal Dasbiswas, Anand K Ramasubramanian","doi":"10.1016/j.bpr.2025.100207","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-linked fibrous networks are central to maintaining the structural integrity and functional relevance of many biological and engineered materials. Fibrin networks are the building blocks of blood clots, mediators of tissue injury and repair, and synthetic wound sealants. Cross-linking of fibrin fibers is catalyzed by the activated form of transglutaminase enzyme FXIIIa, which becomes available in plasma but is also readily presented on the surface of activated platelets and macrophages. The contribution of surface-bound FXIIIa to fibrin structure has not been well understood. In this work, we investigated the role of surface-bound FXIIIa on the formation and structure of fibrin fibers from FXIII-deficient plasma by confining the cross-linking reactions to the surface of microspheres. Quantitative microscopy revealed that cross-linking on FXIIIa-coated surfaces facilitates fibrin deposition following a sigmoidal kinetics, and that these fibers were straighter, longer, and more numerous compared with uncross-linked fibers bound to surfaces coated with anti-fibrin antibody. Our results suggest that, by modifying local fibrin density and structure, surface-bound FXIIIa may play a significant role in the mechanobiology of hemostasis and inflammation.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100207"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surface-bound FXIII enhances deposition and straightness of fibrin fibers.\",\"authors\":\"Myra Awan, Maya Papez, Ankita P Walvekar, Sang-Joon J Lee, Kinjal Dasbiswas, Anand K Ramasubramanian\",\"doi\":\"10.1016/j.bpr.2025.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-linked fibrous networks are central to maintaining the structural integrity and functional relevance of many biological and engineered materials. Fibrin networks are the building blocks of blood clots, mediators of tissue injury and repair, and synthetic wound sealants. Cross-linking of fibrin fibers is catalyzed by the activated form of transglutaminase enzyme FXIIIa, which becomes available in plasma but is also readily presented on the surface of activated platelets and macrophages. The contribution of surface-bound FXIIIa to fibrin structure has not been well understood. In this work, we investigated the role of surface-bound FXIIIa on the formation and structure of fibrin fibers from FXIII-deficient plasma by confining the cross-linking reactions to the surface of microspheres. Quantitative microscopy revealed that cross-linking on FXIIIa-coated surfaces facilitates fibrin deposition following a sigmoidal kinetics, and that these fibers were straighter, longer, and more numerous compared with uncross-linked fibers bound to surfaces coated with anti-fibrin antibody. Our results suggest that, by modifying local fibrin density and structure, surface-bound FXIIIa may play a significant role in the mechanobiology of hemostasis and inflammation.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\" \",\"pages\":\"100207\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2025.100207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

交联纤维网络对于维持许多生物和工程材料的结构完整性和功能相关性至关重要。纤维蛋白网络是血凝块的构建块,组织损伤和修复的介质,以及合成伤口密封剂。纤维蛋白纤维的交联是由谷氨酰胺转酶FXIIIa的活化形式催化的,它在血浆中可用,但也很容易出现在活化的血小板和巨噬细胞表面。表面结合的FXIIIa对纤维蛋白结构的贡献尚未得到很好的理解。在这项工作中,我们通过将交联反应限制在微球表面,研究了表面结合的FXIIIa对缺乏fxiii的血浆中纤维蛋白纤维形成和结构的作用。定量显微镜显示,fxiia涂层表面上的交联促进了纤维蛋白的s型沉积动力学,并且与未交联的纤维结合在涂有抗纤维蛋白抗体的表面相比,这些纤维更直、更长、数量更多。我们的研究结果表明,通过改变局部纤维蛋白密度和结构,表面结合的FXIIIa可能在止血和炎症的机械生物学中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface-bound FXIII enhances deposition and straightness of fibrin fibers.

Cross-linked fibrous networks are central to maintaining the structural integrity and functional relevance of many biological and engineered materials. Fibrin networks are the building blocks of blood clots, mediators of tissue injury and repair, and synthetic wound sealants. Cross-linking of fibrin fibers is catalyzed by the activated form of transglutaminase enzyme FXIIIa, which becomes available in plasma but is also readily presented on the surface of activated platelets and macrophages. The contribution of surface-bound FXIIIa to fibrin structure has not been well understood. In this work, we investigated the role of surface-bound FXIIIa on the formation and structure of fibrin fibers from FXIII-deficient plasma by confining the cross-linking reactions to the surface of microspheres. Quantitative microscopy revealed that cross-linking on FXIIIa-coated surfaces facilitates fibrin deposition following a sigmoidal kinetics, and that these fibers were straighter, longer, and more numerous compared with uncross-linked fibers bound to surfaces coated with anti-fibrin antibody. Our results suggest that, by modifying local fibrin density and structure, surface-bound FXIIIa may play a significant role in the mechanobiology of hemostasis and inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信