{"title":"与编码细胞色素 P450 14-α 固醇脱甲基酶(CYP51)基因的一个独特同源物有关的法氏马杜赖藻的伊曲康唑抗药性。","authors":"Isato Yoshioka, Ahmed Hassan Fahal, Satoshi Kaneko, Wei Cao, Takashi Yaguchi","doi":"10.1371/journal.pntd.0012623","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mycetoma is a deep fungal infection caused by several microorganisms, with Madurella mycetomatis being the most common causative agent. Another related species, Madurella fahalii, is also known to cause eumycetoma. However, unlike M. mycetomatis, M. fahalii exhibits resistance to itraconazole, the standard treatment for eumycetoma, and the underlying cause of this resistance remains unknown. Therefore, understanding the mechanism of this resistance is critical for developing more effective therapies.</p><p><strong>Principal findings: </strong>Using the high-quality draft genome sequence of Madurella fahalii IFM 68171, we identified two copies of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51), the target enzyme of itraconazole. These include a gene conserved among Madurella species (Mfcyp51A1) and a M. fahalii-specific gene (Mfcyp51A2). Both genes are actively transcribed in M. fahalii and are upregulated in response to itraconazole. Furthermore, heterologous expression in Saccharomyces cerevisiae revealed that transformants carrying the Mfcyp51A2 gene exhibited reduced susceptibility to itraconazole compared to those with Mfcyp51A1.</p><p><strong>Conclusion: </strong>We demonstrated that itraconazole resistance in M. fahalii may be attributed to the presence of an additional CYP51 gene. This study represents the first report on the physiological characteristics of Madurella species using genetic engineering techniques.</p>","PeriodicalId":49000,"journal":{"name":"PLoS Neglected Tropical Diseases","volume":"19 3","pages":"e0012623"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964275/pdf/","citationCount":"0","resultStr":"{\"title\":\"Itraconazole resistance in Madurella fahalii linked to a distinct homolog of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51).\",\"authors\":\"Isato Yoshioka, Ahmed Hassan Fahal, Satoshi Kaneko, Wei Cao, Takashi Yaguchi\",\"doi\":\"10.1371/journal.pntd.0012623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mycetoma is a deep fungal infection caused by several microorganisms, with Madurella mycetomatis being the most common causative agent. Another related species, Madurella fahalii, is also known to cause eumycetoma. However, unlike M. mycetomatis, M. fahalii exhibits resistance to itraconazole, the standard treatment for eumycetoma, and the underlying cause of this resistance remains unknown. Therefore, understanding the mechanism of this resistance is critical for developing more effective therapies.</p><p><strong>Principal findings: </strong>Using the high-quality draft genome sequence of Madurella fahalii IFM 68171, we identified two copies of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51), the target enzyme of itraconazole. These include a gene conserved among Madurella species (Mfcyp51A1) and a M. fahalii-specific gene (Mfcyp51A2). Both genes are actively transcribed in M. fahalii and are upregulated in response to itraconazole. Furthermore, heterologous expression in Saccharomyces cerevisiae revealed that transformants carrying the Mfcyp51A2 gene exhibited reduced susceptibility to itraconazole compared to those with Mfcyp51A1.</p><p><strong>Conclusion: </strong>We demonstrated that itraconazole resistance in M. fahalii may be attributed to the presence of an additional CYP51 gene. This study represents the first report on the physiological characteristics of Madurella species using genetic engineering techniques.</p>\",\"PeriodicalId\":49000,\"journal\":{\"name\":\"PLoS Neglected Tropical Diseases\",\"volume\":\"19 3\",\"pages\":\"e0012623\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Neglected Tropical Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pntd.0012623\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Neglected Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pntd.0012623","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Itraconazole resistance in Madurella fahalii linked to a distinct homolog of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51).
Background: Mycetoma is a deep fungal infection caused by several microorganisms, with Madurella mycetomatis being the most common causative agent. Another related species, Madurella fahalii, is also known to cause eumycetoma. However, unlike M. mycetomatis, M. fahalii exhibits resistance to itraconazole, the standard treatment for eumycetoma, and the underlying cause of this resistance remains unknown. Therefore, understanding the mechanism of this resistance is critical for developing more effective therapies.
Principal findings: Using the high-quality draft genome sequence of Madurella fahalii IFM 68171, we identified two copies of the gene encoding cytochrome P450 14-α sterol demethylase (CYP51), the target enzyme of itraconazole. These include a gene conserved among Madurella species (Mfcyp51A1) and a M. fahalii-specific gene (Mfcyp51A2). Both genes are actively transcribed in M. fahalii and are upregulated in response to itraconazole. Furthermore, heterologous expression in Saccharomyces cerevisiae revealed that transformants carrying the Mfcyp51A2 gene exhibited reduced susceptibility to itraconazole compared to those with Mfcyp51A1.
Conclusion: We demonstrated that itraconazole resistance in M. fahalii may be attributed to the presence of an additional CYP51 gene. This study represents the first report on the physiological characteristics of Madurella species using genetic engineering techniques.
期刊介绍:
PLOS Neglected Tropical Diseases publishes research devoted to the pathology, epidemiology, prevention, treatment and control of the neglected tropical diseases (NTDs), as well as relevant public policy.
The NTDs are defined as a group of poverty-promoting chronic infectious diseases, which primarily occur in rural areas and poor urban areas of low-income and middle-income countries. Their impact on child health and development, pregnancy, and worker productivity, as well as their stigmatizing features limit economic stability.
All aspects of these diseases are considered, including:
Pathogenesis
Clinical features
Pharmacology and treatment
Diagnosis
Epidemiology
Vector biology
Vaccinology and prevention
Demographic, ecological and social determinants
Public health and policy aspects (including cost-effectiveness analyses).