白色念珠菌的全身感染需要 FASN-α 亚基诱导的细胞壁重塑来扰乱免疫反应。

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-03-26 eCollection Date: 2025-03-01 DOI:10.1371/journal.ppat.1012865
Yajing Zhao, Zhishan Zhou, Guiyue Cai, Dandan Zhang, Xiaoting Yu, Dongmei Li, Shuixiu Li, Zhanpeng Zhang, Dongli Zhang, Jiyao Luo, Yunfeng Hu, Aili Gao, Hong Zhang
{"title":"白色念珠菌的全身感染需要 FASN-α 亚基诱导的细胞壁重塑来扰乱免疫反应。","authors":"Yajing Zhao, Zhishan Zhou, Guiyue Cai, Dandan Zhang, Xiaoting Yu, Dongmei Li, Shuixiu Li, Zhanpeng Zhang, Dongli Zhang, Jiyao Luo, Yunfeng Hu, Aili Gao, Hong Zhang","doi":"10.1371/journal.ppat.1012865","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive fungal infections are a leading cause of mortality and morbidity in patients with severely impaired host defenses, while treatment options remain limited. Fatty acid synthase (FASN), the key enzyme regulating de novo biosynthesis of fatty acids, is crucial for the lethal infection of fungi; however, its pathogenic mechanism is still far from clear. Here, we identified the α subunit of FASN as a potential immunotherapeutic target against systemic Candida albicans infection. The avirulence of the encoded gene (FAS2) -deleted mutant in a mouse model of systemic candidiasis is not due to its fitness defects, because sufficient exogenous fatty acids in serum can overcome FASN inhibition. However, the FAS2-deleted mutant displays increased circulating innate immune responses and enhances activated neutrophil fungicidal activity through the unmasking of immunogenic cell wall epitopes via the Rho-1 dependent Mkc1-MAPK signaling pathway, which facilitates fungal clearance, reduces renal tissue damage and inflammatory cell infiltration, ultimately lowers fungal pathogenicity. Priming with the FAS2-deleted mutant provided significant protection against subsequent lethal infection with wild-type C. albicans in mice as early as one week, and it was well-tolerated with limited toxicity. Our findings indicate that the FASN-α subunit plays key roles in the regulation of neutrophil-associated antifungal immunity and could be a potential target for immunotherapeutic intervention.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 3","pages":"e1012865"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systemic infection by Candida albicans requires FASN-α subunit induced cell wall remodeling to perturb immune response.\",\"authors\":\"Yajing Zhao, Zhishan Zhou, Guiyue Cai, Dandan Zhang, Xiaoting Yu, Dongmei Li, Shuixiu Li, Zhanpeng Zhang, Dongli Zhang, Jiyao Luo, Yunfeng Hu, Aili Gao, Hong Zhang\",\"doi\":\"10.1371/journal.ppat.1012865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive fungal infections are a leading cause of mortality and morbidity in patients with severely impaired host defenses, while treatment options remain limited. Fatty acid synthase (FASN), the key enzyme regulating de novo biosynthesis of fatty acids, is crucial for the lethal infection of fungi; however, its pathogenic mechanism is still far from clear. Here, we identified the α subunit of FASN as a potential immunotherapeutic target against systemic Candida albicans infection. The avirulence of the encoded gene (FAS2) -deleted mutant in a mouse model of systemic candidiasis is not due to its fitness defects, because sufficient exogenous fatty acids in serum can overcome FASN inhibition. However, the FAS2-deleted mutant displays increased circulating innate immune responses and enhances activated neutrophil fungicidal activity through the unmasking of immunogenic cell wall epitopes via the Rho-1 dependent Mkc1-MAPK signaling pathway, which facilitates fungal clearance, reduces renal tissue damage and inflammatory cell infiltration, ultimately lowers fungal pathogenicity. Priming with the FAS2-deleted mutant provided significant protection against subsequent lethal infection with wild-type C. albicans in mice as early as one week, and it was well-tolerated with limited toxicity. Our findings indicate that the FASN-α subunit plays key roles in the regulation of neutrophil-associated antifungal immunity and could be a potential target for immunotherapeutic intervention.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 3\",\"pages\":\"e1012865\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012865\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012865","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systemic infection by Candida albicans requires FASN-α subunit induced cell wall remodeling to perturb immune response.

Invasive fungal infections are a leading cause of mortality and morbidity in patients with severely impaired host defenses, while treatment options remain limited. Fatty acid synthase (FASN), the key enzyme regulating de novo biosynthesis of fatty acids, is crucial for the lethal infection of fungi; however, its pathogenic mechanism is still far from clear. Here, we identified the α subunit of FASN as a potential immunotherapeutic target against systemic Candida albicans infection. The avirulence of the encoded gene (FAS2) -deleted mutant in a mouse model of systemic candidiasis is not due to its fitness defects, because sufficient exogenous fatty acids in serum can overcome FASN inhibition. However, the FAS2-deleted mutant displays increased circulating innate immune responses and enhances activated neutrophil fungicidal activity through the unmasking of immunogenic cell wall epitopes via the Rho-1 dependent Mkc1-MAPK signaling pathway, which facilitates fungal clearance, reduces renal tissue damage and inflammatory cell infiltration, ultimately lowers fungal pathogenicity. Priming with the FAS2-deleted mutant provided significant protection against subsequent lethal infection with wild-type C. albicans in mice as early as one week, and it was well-tolerated with limited toxicity. Our findings indicate that the FASN-α subunit plays key roles in the regulation of neutrophil-associated antifungal immunity and could be a potential target for immunotherapeutic intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信