基于多尺度图像和多特征融合框架的支气管超声图像诊断肺癌。

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Huitao Wang, Takahiro Nakajima, Kohei Shikano, Yukihiro Nomura, Toshiya Nakaguchi
{"title":"基于多尺度图像和多特征融合框架的支气管超声图像诊断肺癌。","authors":"Huitao Wang, Takahiro Nakajima, Kohei Shikano, Yukihiro Nomura, Toshiya Nakaguchi","doi":"10.3390/tomography11030024","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is the leading cause of cancer-related deaths globally and ranks among the most common cancer types. Given its low overall five-year survival rate, early diagnosis and timely treatment are essential to improving patient outcomes. In recent years, advances in computer technology have enabled artificial intelligence to make groundbreaking progress in imaging-based lung cancer diagnosis. The primary aim of this study is to develop a computer-aided diagnosis (CAD) system for lung cancer using endobronchial ultrasonography (EBUS) images and deep learning algorithms to facilitate early detection and improve patient survival rates. We propose M3-Net, which is a multi-branch framework that integrates multiple features through an attention-based mechanism, enhancing diagnostic performance by providing more comprehensive information for lung cancer assessment. The framework was validated on a dataset of 95 patient cases, including 13 benign and 82 malignant cases. The dataset comprises 1140 EBUS images, with 540 images used for training, and 300 images each for the validation and test sets. The evaluation yielded the following results: accuracy of 0.76, F1-score of 0.75, AUC of 0.83, PPV of 0.80, NPV of 0.75, sensitivity of 0.72, and specificity of 0.80. These findings indicate that the proposed attention-based multi-feature fusion framework holds significant potential in assisting with lung cancer diagnosis.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework.\",\"authors\":\"Huitao Wang, Takahiro Nakajima, Kohei Shikano, Yukihiro Nomura, Toshiya Nakaguchi\",\"doi\":\"10.3390/tomography11030024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is the leading cause of cancer-related deaths globally and ranks among the most common cancer types. Given its low overall five-year survival rate, early diagnosis and timely treatment are essential to improving patient outcomes. In recent years, advances in computer technology have enabled artificial intelligence to make groundbreaking progress in imaging-based lung cancer diagnosis. The primary aim of this study is to develop a computer-aided diagnosis (CAD) system for lung cancer using endobronchial ultrasonography (EBUS) images and deep learning algorithms to facilitate early detection and improve patient survival rates. We propose M3-Net, which is a multi-branch framework that integrates multiple features through an attention-based mechanism, enhancing diagnostic performance by providing more comprehensive information for lung cancer assessment. The framework was validated on a dataset of 95 patient cases, including 13 benign and 82 malignant cases. The dataset comprises 1140 EBUS images, with 540 images used for training, and 300 images each for the validation and test sets. The evaluation yielded the following results: accuracy of 0.76, F1-score of 0.75, AUC of 0.83, PPV of 0.80, NPV of 0.75, sensitivity of 0.72, and specificity of 0.80. These findings indicate that the proposed attention-based multi-feature fusion framework holds significant potential in assisting with lung cancer diagnosis.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography11030024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11030024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是全球癌症相关死亡的主要原因,也是最常见的癌症类型之一。鉴于其总体5年生存率较低,早期诊断和及时治疗对于改善患者预后至关重要。近年来,计算机技术的进步使人工智能在基于成像的肺癌诊断方面取得了突破性进展。本研究的主要目的是利用支气管内超声(EBUS)图像和深度学习算法开发肺癌的计算机辅助诊断(CAD)系统,以促进早期发现和提高患者生存率。我们提出的M3-Net是一个多分支框架,通过基于注意力的机制集成了多种功能,通过为肺癌评估提供更全面的信息来提高诊断性能。该框架在95例患者病例的数据集上进行了验证,其中包括13例良性病例和82例恶性病例。该数据集包括1140张EBUS图像,其中540张用于训练,300张用于验证集和测试集。评估结果为:准确率0.76,f1评分0.75,AUC 0.83, PPV 0.80, NPV 0.75,敏感性0.72,特异性0.80。这些发现表明,提出的基于注意力的多特征融合框架在协助肺癌诊断方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework.

Lung cancer is the leading cause of cancer-related deaths globally and ranks among the most common cancer types. Given its low overall five-year survival rate, early diagnosis and timely treatment are essential to improving patient outcomes. In recent years, advances in computer technology have enabled artificial intelligence to make groundbreaking progress in imaging-based lung cancer diagnosis. The primary aim of this study is to develop a computer-aided diagnosis (CAD) system for lung cancer using endobronchial ultrasonography (EBUS) images and deep learning algorithms to facilitate early detection and improve patient survival rates. We propose M3-Net, which is a multi-branch framework that integrates multiple features through an attention-based mechanism, enhancing diagnostic performance by providing more comprehensive information for lung cancer assessment. The framework was validated on a dataset of 95 patient cases, including 13 benign and 82 malignant cases. The dataset comprises 1140 EBUS images, with 540 images used for training, and 300 images each for the validation and test sets. The evaluation yielded the following results: accuracy of 0.76, F1-score of 0.75, AUC of 0.83, PPV of 0.80, NPV of 0.75, sensitivity of 0.72, and specificity of 0.80. These findings indicate that the proposed attention-based multi-feature fusion framework holds significant potential in assisting with lung cancer diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信