Huimei Zhang , Sijia Wang , Qi Zhang , Xinyu Du , Danyang Xu , Jinkun Wen , Mingrui Jin , Jing Liu , Xiaobao Jin , Mengxia Wang , Li Luo , Lixia Li
{"title":"吲哚-3-丙酸通过激活PI3K/AKT通路促进周围神经损伤后雪旺细胞增殖。","authors":"Huimei Zhang , Sijia Wang , Qi Zhang , Xinyu Du , Danyang Xu , Jinkun Wen , Mingrui Jin , Jing Liu , Xiaobao Jin , Mengxia Wang , Li Luo , Lixia Li","doi":"10.1016/j.neurot.2025.e00578","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of Schwann cells (SCs) is integral for axonal regeneration following peripheral nerve injury, and enhancing their proliferation can accelerate axonal regeneration. Indole-3-propionic acid (IPA), a metabolite of tryptophan synthesized by the intestinal microbiota, has potential in accelerating axonal regeneration in peripheral nerves. Nonetheless, the capacity of IPA to promote SC proliferation remains undetermined. Consequently, this study aimed to investigate the effects of IPA on SC proliferation and the underlying mechanisms. Therefore, we cultured RSC96 cells in vitro and used a Cell Counting Kit-8 (CCK8), an EdU Cell Proliferation Detection Kit (EdU), and a Cell Cycle and Apoptosis Assay Kit for the analyses. Additionally, we established a rat sciatic nerve crush injury model in vivo and performed immunofluorescence staining. These findings indicated that IPA enhanced SC proliferation. We further investigated the potential mechanism by which IPA promotes SC proliferation by conducting Western blotting and observed that IPA increased the levels of phosphorylated phosphatidylinositol 3-kinase/phosphatidylinositol 3-kinase (p-PI3K/PI3K) and phosphorylated protein kinase B/protein kinase B (p-AKT/AKT) in RSC96 cells, which suggested that IPA may promote the proliferation of RSC96 cells by activating the PI3K/AKT pathway. We cultured RSC96 cells in vitro, established a sciatic nerve crush model in vivo, and administered a PI3K inhibitor (LY294002) in combination with IPA treatment to validate this hypothesis. Our results revealed a reduction in the proliferation rate of RSC96 cells or SCs following the inhibition of p-PI3K/PI3K and p-AKT/AKT expression, as evidenced by the results of the EdU, CCK8 and immunofluorescence staining assays. These findings indicated that IPA may indeed promote SC proliferation through the activation of the PI3K/AKT pathway.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"22 4","pages":"Article e00578"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indole-3-propionic acid promotes Schwann cell proliferation following peripheral nerve injury by activating the PI3K/AKT pathway\",\"authors\":\"Huimei Zhang , Sijia Wang , Qi Zhang , Xinyu Du , Danyang Xu , Jinkun Wen , Mingrui Jin , Jing Liu , Xiaobao Jin , Mengxia Wang , Li Luo , Lixia Li\",\"doi\":\"10.1016/j.neurot.2025.e00578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The proliferation of Schwann cells (SCs) is integral for axonal regeneration following peripheral nerve injury, and enhancing their proliferation can accelerate axonal regeneration. Indole-3-propionic acid (IPA), a metabolite of tryptophan synthesized by the intestinal microbiota, has potential in accelerating axonal regeneration in peripheral nerves. Nonetheless, the capacity of IPA to promote SC proliferation remains undetermined. Consequently, this study aimed to investigate the effects of IPA on SC proliferation and the underlying mechanisms. Therefore, we cultured RSC96 cells in vitro and used a Cell Counting Kit-8 (CCK8), an EdU Cell Proliferation Detection Kit (EdU), and a Cell Cycle and Apoptosis Assay Kit for the analyses. Additionally, we established a rat sciatic nerve crush injury model in vivo and performed immunofluorescence staining. These findings indicated that IPA enhanced SC proliferation. We further investigated the potential mechanism by which IPA promotes SC proliferation by conducting Western blotting and observed that IPA increased the levels of phosphorylated phosphatidylinositol 3-kinase/phosphatidylinositol 3-kinase (p-PI3K/PI3K) and phosphorylated protein kinase B/protein kinase B (p-AKT/AKT) in RSC96 cells, which suggested that IPA may promote the proliferation of RSC96 cells by activating the PI3K/AKT pathway. We cultured RSC96 cells in vitro, established a sciatic nerve crush model in vivo, and administered a PI3K inhibitor (LY294002) in combination with IPA treatment to validate this hypothesis. Our results revealed a reduction in the proliferation rate of RSC96 cells or SCs following the inhibition of p-PI3K/PI3K and p-AKT/AKT expression, as evidenced by the results of the EdU, CCK8 and immunofluorescence staining assays. These findings indicated that IPA may indeed promote SC proliferation through the activation of the PI3K/AKT pathway.</div></div>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\"22 4\",\"pages\":\"Article e00578\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187874792500056X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187874792500056X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Indole-3-propionic acid promotes Schwann cell proliferation following peripheral nerve injury by activating the PI3K/AKT pathway
The proliferation of Schwann cells (SCs) is integral for axonal regeneration following peripheral nerve injury, and enhancing their proliferation can accelerate axonal regeneration. Indole-3-propionic acid (IPA), a metabolite of tryptophan synthesized by the intestinal microbiota, has potential in accelerating axonal regeneration in peripheral nerves. Nonetheless, the capacity of IPA to promote SC proliferation remains undetermined. Consequently, this study aimed to investigate the effects of IPA on SC proliferation and the underlying mechanisms. Therefore, we cultured RSC96 cells in vitro and used a Cell Counting Kit-8 (CCK8), an EdU Cell Proliferation Detection Kit (EdU), and a Cell Cycle and Apoptosis Assay Kit for the analyses. Additionally, we established a rat sciatic nerve crush injury model in vivo and performed immunofluorescence staining. These findings indicated that IPA enhanced SC proliferation. We further investigated the potential mechanism by which IPA promotes SC proliferation by conducting Western blotting and observed that IPA increased the levels of phosphorylated phosphatidylinositol 3-kinase/phosphatidylinositol 3-kinase (p-PI3K/PI3K) and phosphorylated protein kinase B/protein kinase B (p-AKT/AKT) in RSC96 cells, which suggested that IPA may promote the proliferation of RSC96 cells by activating the PI3K/AKT pathway. We cultured RSC96 cells in vitro, established a sciatic nerve crush model in vivo, and administered a PI3K inhibitor (LY294002) in combination with IPA treatment to validate this hypothesis. Our results revealed a reduction in the proliferation rate of RSC96 cells or SCs following the inhibition of p-PI3K/PI3K and p-AKT/AKT expression, as evidenced by the results of the EdU, CCK8 and immunofluorescence staining assays. These findings indicated that IPA may indeed promote SC proliferation through the activation of the PI3K/AKT pathway.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.