脊髓性肌萎缩中的神经胶质细胞:对非细胞自主机制和治疗意义的推测。

IF 3.2 Q2 CLINICAL NEUROLOGY
Andrej Belančić, Tamara Janković, Elvira Meni Maria Gkrinia, Iva Kristić, Jelena Rajič Bumber, Valentino Rački, Kristina Pilipović, Dinko Vitezić, Jasenka Mršić-Pelčić
{"title":"脊髓性肌萎缩中的神经胶质细胞:对非细胞自主机制和治疗意义的推测。","authors":"Andrej Belančić, Tamara Janković, Elvira Meni Maria Gkrinia, Iva Kristić, Jelena Rajič Bumber, Valentino Rački, Kristina Pilipović, Dinko Vitezić, Jasenka Mršić-Pelčić","doi":"10.3390/neurolint17030041","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the <i>SMN1</i> gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.</p>","PeriodicalId":19130,"journal":{"name":"Neurology International","volume":"17 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications.\",\"authors\":\"Andrej Belančić, Tamara Janković, Elvira Meni Maria Gkrinia, Iva Kristić, Jelena Rajič Bumber, Valentino Rački, Kristina Pilipović, Dinko Vitezić, Jasenka Mršić-Pelčić\",\"doi\":\"10.3390/neurolint17030041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the <i>SMN1</i> gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.</p>\",\"PeriodicalId\":19130,\"journal\":{\"name\":\"Neurology International\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurolint17030041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurolint17030041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脊髓性肌萎缩症(SMA)是一种由SMN1基因纯合缺失或突变引起的神经肌肉疾病,导致进行性运动神经元变性。虽然SMA一直被视为一种运动神经元自主疾病,但越来越多的证据表明,胶质细胞(星形胶质细胞、小胶质细胞、少突胶质细胞和雪旺细胞)在该疾病的病理生理中起着重要作用。星形胶质细胞功能障碍通过钙稳态受损、突触完整性破坏和神经营养因子缺陷导致运动神经元易感性。小胶质细胞通过反应性胶质形成和补体介导的突触剥离,加剧神经变性和神经炎症。少突胶质细胞表现出分化和代谢支持受损,而雪旺细胞表现出髓鞘形成、细胞外基质组成和神经肌肉连接维持异常,进一步损害运动功能。NF-κB、Notch和JAK/STAT等通路的失调,以及补体蛋白和microrna的上调,强化了SMA的非细胞自主性。尽管smn修复疗法取得了进展,但它们并不能完全缓解神经胶质功能障碍。靶向神经胶质病理,包括反应性星形胶质细胞形成、小胶质细胞极化和髓鞘形成缺陷的调节,是治疗干预的关键途径。这篇综述全面研究了神经胶质细胞在SMA中的多方面作用,并强调了新兴的神经胶质靶向策略,以提高治疗效果和改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications.

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurology International
Neurology International CLINICAL NEUROLOGY-
CiteScore
3.70
自引率
3.30%
发文量
69
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信