Zhipeng A Wang, Jonathan Markert, Samual D Whedon, Maheeshi Yapa Abeywardana, Xinlei Sheng, Eunju Nam, Kwangwoon Lee, Maggie Chen, Amanda Waterbury, Yingming Zhao, Lucas Farnung, Philip A Cole
{"title":"SIRT6脱乙酰酶活性的结构和酶可塑性。","authors":"Zhipeng A Wang, Jonathan Markert, Samual D Whedon, Maheeshi Yapa Abeywardana, Xinlei Sheng, Eunju Nam, Kwangwoon Lee, Maggie Chen, Amanda Waterbury, Yingming Zhao, Lucas Farnung, Philip A Cole","doi":"10.1016/j.jbc.2025.108446","DOIUrl":null,"url":null,"abstract":"<p><p>Sirtuin 6 (SIRT6) is an NAD-dependent protein deacylase that targets lysine residues in histones in the cell nucleus, where it helps maintain genome stability and links metabolism to epigenetic control. Dysregulation of SIRT6 is believed to be associated with aging and cancer, making it of pharmacological interest. In this study, we use cryogenic electron microscopy (cryo-EM) and enzymology to explore SIRT6 preference and adaptability towards different nucleosomal substrates. We have visualized a trapped complex of SIRT6 in the process of deacylating H3K27, demonstrating how SIRT6 undergoes conformational changes to remove differently positioned histone marks. Additional biochemical studies further reveal SIRT6's plasticity, which accommodates various metabolism-linked modifications such as lysine lactylation and β-hydroxybutyrylation. To further understand the basis for substrate selectivity of SIRT6, we explore the effects of an established G60A enzyme mutation, proximal H3 modifications, and small molecule modulators. These findings highlight SIRT6's versatility and provide key mechanistic insights into its molecular recognition.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108446"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Enzymatic Plasticity of SIRT6 Deacylase Activity.\",\"authors\":\"Zhipeng A Wang, Jonathan Markert, Samual D Whedon, Maheeshi Yapa Abeywardana, Xinlei Sheng, Eunju Nam, Kwangwoon Lee, Maggie Chen, Amanda Waterbury, Yingming Zhao, Lucas Farnung, Philip A Cole\",\"doi\":\"10.1016/j.jbc.2025.108446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sirtuin 6 (SIRT6) is an NAD-dependent protein deacylase that targets lysine residues in histones in the cell nucleus, where it helps maintain genome stability and links metabolism to epigenetic control. Dysregulation of SIRT6 is believed to be associated with aging and cancer, making it of pharmacological interest. In this study, we use cryogenic electron microscopy (cryo-EM) and enzymology to explore SIRT6 preference and adaptability towards different nucleosomal substrates. We have visualized a trapped complex of SIRT6 in the process of deacylating H3K27, demonstrating how SIRT6 undergoes conformational changes to remove differently positioned histone marks. Additional biochemical studies further reveal SIRT6's plasticity, which accommodates various metabolism-linked modifications such as lysine lactylation and β-hydroxybutyrylation. To further understand the basis for substrate selectivity of SIRT6, we explore the effects of an established G60A enzyme mutation, proximal H3 modifications, and small molecule modulators. These findings highlight SIRT6's versatility and provide key mechanistic insights into its molecular recognition.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"108446\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.108446\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural and Enzymatic Plasticity of SIRT6 Deacylase Activity.
Sirtuin 6 (SIRT6) is an NAD-dependent protein deacylase that targets lysine residues in histones in the cell nucleus, where it helps maintain genome stability and links metabolism to epigenetic control. Dysregulation of SIRT6 is believed to be associated with aging and cancer, making it of pharmacological interest. In this study, we use cryogenic electron microscopy (cryo-EM) and enzymology to explore SIRT6 preference and adaptability towards different nucleosomal substrates. We have visualized a trapped complex of SIRT6 in the process of deacylating H3K27, demonstrating how SIRT6 undergoes conformational changes to remove differently positioned histone marks. Additional biochemical studies further reveal SIRT6's plasticity, which accommodates various metabolism-linked modifications such as lysine lactylation and β-hydroxybutyrylation. To further understand the basis for substrate selectivity of SIRT6, we explore the effects of an established G60A enzyme mutation, proximal H3 modifications, and small molecule modulators. These findings highlight SIRT6's versatility and provide key mechanistic insights into its molecular recognition.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.