Anjali Srivastava, Asha Lata Singh, Aniruddha Kumar, Alok Kumar
{"title":"克雷伯氏菌sp. (BH-A1)对采矿污染土壤中铬(VI)的生物修复:环境影响。","authors":"Anjali Srivastava, Asha Lata Singh, Aniruddha Kumar, Alok Kumar","doi":"10.1007/s10653-025-02448-2","DOIUrl":null,"url":null,"abstract":"<p><p>The present investigation aimed to isolate and identify a novel bacterium from chromium (VI)-contaminated soil samples collected from the Gorbi mine area, Singrauli coalfield, evaluates its potential for Cr(VI) reduction to Cr(III) and enhances environmental and operational conditions to apply this in bioremediation of Cr-contaminated soils. A bacterium was newly isolated from contaminated soils of coal mines for chromium (VI) reduction and identified as Klebsiella sp. (BH-A1) using 16S rRNA gene sequencing. Calcium chloride and sodium alginate solutions were used to immobilize the bacterial cells of isolated Klebsiella sp. Bacteria beads (Klebsiella sp. BH-A1) were tailored to reduce 10 µg/g Cr(VI)-contaminated soil under varied environmental factors such as bead biomass (200-1000 mg), pH (5-8), temperature (25-35 °C), and nutrient sources. Beads of Klebsiella sp. (BH-A1) (1000 mg/g) were efficient for 87% reduction of 10 µg/g Cr(VI) present in the soil at pH 7, 30 °C, within a six-hour contact period. Fourier transform infrared spectroscopy analyses reveal varied functional groups like -OH, -NH, and -COOH in Cr-treated bacterial beads. Functional groups corroborate their involvement in Cr(VI) and Cr(III) absorption on the cell surface of bacteria. Chromium-treated Klebsiella sp. (BH-A1) cell size was wider due to chromium absorption than the non-treated bacterial cells after SEM analyses. The energy dispersive X-ray plot has proven the 0.41 weight percent chromium accumulation inside the bacterial cells. Moreover, XPS analyses of Cr-treated bacterial cells indicate reduced Cr(VI) into Cr(III). The finding further suggests that Klebsiella sp. (BH-A1) might be a new prospect for potential application in Cr detoxification from Cr-contaminated soil. The limitations of this research include the accumulation of hazardous metabolic products due to low diffusion rates, the formation of thick biofilms blocking bead pores, and interrupted substrate transport from the bulk liquid to immobilized cells.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"140"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of chromium (VI) from mining-contaminated soil using Klebsiella sp. (BH-A1): environmental implications.\",\"authors\":\"Anjali Srivastava, Asha Lata Singh, Aniruddha Kumar, Alok Kumar\",\"doi\":\"10.1007/s10653-025-02448-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present investigation aimed to isolate and identify a novel bacterium from chromium (VI)-contaminated soil samples collected from the Gorbi mine area, Singrauli coalfield, evaluates its potential for Cr(VI) reduction to Cr(III) and enhances environmental and operational conditions to apply this in bioremediation of Cr-contaminated soils. A bacterium was newly isolated from contaminated soils of coal mines for chromium (VI) reduction and identified as Klebsiella sp. (BH-A1) using 16S rRNA gene sequencing. Calcium chloride and sodium alginate solutions were used to immobilize the bacterial cells of isolated Klebsiella sp. Bacteria beads (Klebsiella sp. BH-A1) were tailored to reduce 10 µg/g Cr(VI)-contaminated soil under varied environmental factors such as bead biomass (200-1000 mg), pH (5-8), temperature (25-35 °C), and nutrient sources. Beads of Klebsiella sp. (BH-A1) (1000 mg/g) were efficient for 87% reduction of 10 µg/g Cr(VI) present in the soil at pH 7, 30 °C, within a six-hour contact period. Fourier transform infrared spectroscopy analyses reveal varied functional groups like -OH, -NH, and -COOH in Cr-treated bacterial beads. Functional groups corroborate their involvement in Cr(VI) and Cr(III) absorption on the cell surface of bacteria. Chromium-treated Klebsiella sp. (BH-A1) cell size was wider due to chromium absorption than the non-treated bacterial cells after SEM analyses. The energy dispersive X-ray plot has proven the 0.41 weight percent chromium accumulation inside the bacterial cells. Moreover, XPS analyses of Cr-treated bacterial cells indicate reduced Cr(VI) into Cr(III). The finding further suggests that Klebsiella sp. (BH-A1) might be a new prospect for potential application in Cr detoxification from Cr-contaminated soil. The limitations of this research include the accumulation of hazardous metabolic products due to low diffusion rates, the formation of thick biofilms blocking bead pores, and interrupted substrate transport from the bulk liquid to immobilized cells.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 5\",\"pages\":\"140\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02448-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02448-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Bioremediation of chromium (VI) from mining-contaminated soil using Klebsiella sp. (BH-A1): environmental implications.
The present investigation aimed to isolate and identify a novel bacterium from chromium (VI)-contaminated soil samples collected from the Gorbi mine area, Singrauli coalfield, evaluates its potential for Cr(VI) reduction to Cr(III) and enhances environmental and operational conditions to apply this in bioremediation of Cr-contaminated soils. A bacterium was newly isolated from contaminated soils of coal mines for chromium (VI) reduction and identified as Klebsiella sp. (BH-A1) using 16S rRNA gene sequencing. Calcium chloride and sodium alginate solutions were used to immobilize the bacterial cells of isolated Klebsiella sp. Bacteria beads (Klebsiella sp. BH-A1) were tailored to reduce 10 µg/g Cr(VI)-contaminated soil under varied environmental factors such as bead biomass (200-1000 mg), pH (5-8), temperature (25-35 °C), and nutrient sources. Beads of Klebsiella sp. (BH-A1) (1000 mg/g) were efficient for 87% reduction of 10 µg/g Cr(VI) present in the soil at pH 7, 30 °C, within a six-hour contact period. Fourier transform infrared spectroscopy analyses reveal varied functional groups like -OH, -NH, and -COOH in Cr-treated bacterial beads. Functional groups corroborate their involvement in Cr(VI) and Cr(III) absorption on the cell surface of bacteria. Chromium-treated Klebsiella sp. (BH-A1) cell size was wider due to chromium absorption than the non-treated bacterial cells after SEM analyses. The energy dispersive X-ray plot has proven the 0.41 weight percent chromium accumulation inside the bacterial cells. Moreover, XPS analyses of Cr-treated bacterial cells indicate reduced Cr(VI) into Cr(III). The finding further suggests that Klebsiella sp. (BH-A1) might be a new prospect for potential application in Cr detoxification from Cr-contaminated soil. The limitations of this research include the accumulation of hazardous metabolic products due to low diffusion rates, the formation of thick biofilms blocking bead pores, and interrupted substrate transport from the bulk liquid to immobilized cells.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.